
Engineering Information Management Tools by Example

Michael Nebeling, Matthias Geel and Moira C. Norrie
Department of Computer Science, ETH Zurich

CH-8092 Zurich, Switzerland
{nebeling,geel,norrie}@inf.ethz.ch

ABSTRACT
While there are many established methodologies for infor-
mation systems development, designing by example has not
been formally explored and applied previously. Our work
is also motivated by the desire to explore interface-driven
development techniques that could complement existing ap-
proaches such as model-driven engineering with the goal of
reducing the need for modelling and reengineering of exist-
ing applications and interfaces, while still supporting the
development task. We explore the example-based technique
for rapid development of powerful and flexible information
management tools based on the example of Adobe Photo-
shop Lightroom, a system that was originally designed to
support the workflow of digital photographers in a flexible
way. We analyse experiments in which two new systems—
one for managing collections of research papers and another
for software project management—were developed based on
the Lightroom paradigm. We derive a conceptual frame-
work for engineering by example and assess the method by
comparing it to traditional model-driven engineering.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Theory and methods

General Terms
Design, Human Factors

Keywords
Engineering by example, Lightroom paradigm

1. INTRODUCTION
Designing by example is an established technique used by

designers and now studied and promoted by a number of
researchers in the HCI community [9, 16]. Building on our
own experiences as well as those of others is clearly more ef-
ficient than starting each time from scratch. This has been
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
AVI’14 , May 27 - 29 2014, Como, Italy.
Copyright c© 2014 ACM 978-1-4503-2775-6/14/05...$15.00.
http://dx.doi.org/10.1145/2598153.2598164

recognised within the information systems and software en-
gineering communities, leading to the widespread adoption
of design patterns [6] at both the conceptual and imple-
mentation levels as well as the concept of software product
lines [3]. However, the focus is often on the reuse of software
artefacts, which tends to promote conformity rather than
novelty, while it has been shown that the use of examples can
encourage creativity if used in the right way [9]. First of all,
designers often use examples of similar products or systems
not to simply copy them, but rather to analyse them with
a view to thinking about what they could change. Second,
they deliberately search out examples from other domains
and use analogical reasoning to transfer concepts and ideas
to the current problem being addressed. Although example-
driven design may often be applied implicitly, the potential
as a systematic development method is so far unexplored.

We set out to study example-driven design and investigate
how it could be formalised to support information systems
engineering, as well as how it would compare to other, well-
established techniques such as model-driven development.
While this technique has its origins in the software engineer-
ing discipline, it has previously been extended to web appli-
cation development [2] and user interface engineering [18].
The common approach is to start from a model that is a
rather abstract description of the artefact to be built and,
from that, generate or systematically derive the application
or user interface. In this sense, it is opposed to designing by
example where an existing interface is the starting point.

In a first step, our investigations have focused on the de-
sign of new information management tools. Applications de-
signed to support the workflow of photographers are among
the most advanced personal information management tools
available today. Not only do they offer a wide range of fea-
tures for organising both the physical and logical storage
of data, but they also provide rich functionality for pro-
cessing and publishing that data in various ways. Adobe
Photoshop Lightroom1 is a prime example of such a tool,
designed to offer a modular, task-based environment (Fig-
ure 1) to support the workflow of professional and serious
amateur photographers in a flexible way [13]. We there-
fore decided to look at how the information management
paradigm used in Lightroom could be applied to other do-
mains. Our approach was to start with the management of
research publications and ask a student intern to build a first
prototype for managing and querying publications based on
the Lightroom paradigm [7]. This prototype focused on the
user interaction borrowing key concepts from Lightroom’s

1http://www.adobe.com/products/photoshoplightroom

Faceted Search & Metadata

User‐Driven AttributesUser‐Driven Attributes

Different Visualisations

In‐place Attribute Manipulation

WorkflowWorkflow

Figure 1: Adobe Photoshop Lightroom

user interface and very quickly showed promising results us-
ing the example-based technique.

In this paper, we focus on follow-up experiments in which
another group of students were asked to build two additional
prototypes. The first again targets publication management,
but also includes database functionality and support for re-
search tasks such as performing a literature review where
users may want to mark and organise publications to track
papers read, annotated and selected for reference. The sec-
ond prototype applies the Lightroom paradigm to software
project management and offers tools for managing software
projects in terms of tasks and milestones. In both cases,
the students were asked to use Lightroom as an example,
but since collaboration is something central to the new do-
mains, but rarer in photographer workflow, they were also
asked to think beyond Lightroom and include features such
as support for sharing.

This paper makes two primary contributions. First, it
studies Lightroom as an example of an information manage-
ment tool with the potential to generalise it to other do-
mains. Second, it analyses the method used for developing
the new prototypes inspired from Lightroom and presents
a conceptual framework for using design-by-example as a
user-driven development approach for information systems.

We start in the next section with a presentation of the
main features of Lightroom along with a description of how
it was designed and why we considered it a good example for
our investigations. We then present the experiment and the
resulting prototypes, followed by an analysis and discussion
of the method in terms of development effort and the quality
of the prototypes, as well as elaborating on our experience
with, and the potential of, example-driven design.

2. LIGHTROOM PARADIGM
In 2002, Adobe started exploring ideas for a new product

designed to support the entire workflow of digital photog-
raphers [13]. Previously, the focus had been on providing
tools for image processing rather than management. The
team at Adobe realised that little was known about the de-
tails of how photographers work and therefore they carried
out an initial study based on interviews with different types
of photographers. The results revealed that photographers
were“patching together a series of applications to reach their
goals”and there was a large variation in the time spent using
Photoshop as well as the features used.

The Adobe team felt that a complete workflow solution
could not only improve the efficiency of photographers, but
also provide a “more consistent creative environment”. They
set about defining the requirements for a modular and task-
based environment by getting photographers to participate
in a qualitiative card sort exercise where they selected, sorted,
grouped and labelled tasks. Although there was a wide vari-
ation in the initial task groups, after combining and decom-
posing them, there was a fair degree of consistency among
photographers in how they grouped and ordered tasks. At
the same time, features which appeared in many groups were
identified as candidates for global status. They also identi-
fied commonly used image processing features that could be
integrated into the new tool. This would mean that only
those photographers requiring advanced processing features
would have to open the Photoshop main application.

Adobe Photoshop Lightroom is the tool that emerged
from this project and some of the main features are labelled
in the screenshot in Figure 1. To support the management
of thousands of images, it adopts features promoted in re-

search such as automatic metadata extraction [10], advanced
tagging systems [4] and dynamic, faceted search [15].

The main screen has a panel on each side which is made
visible as and when required. The left panel shows the or-
ganisation of images into physical folders and logical col-
lections which can be managed manually or correspond to
pre-defined queries, i.e. smart collections. The bottom panel
provides a horizontal, scrollable, strip of thumbnails of the
current folder or collection. The right panel provides ac-
cess to functions associated with a specific module. (Note
that these panels are hidden in Figure 1). The top panel
with the logo and modules can also be hidden to extend the
image view area. Note that the faceted search interface is
effectively another panel contained within the central pane
that can be activated when required. The combination of
the modules together with the panels allows the interface to
be adapted to the current task.

In contrast to many special-purpose information manage-
ment tools, Lightroom aims to support the entire workflow of
photographers. Unlike other image processing tools, Light-
room focuses on the tasks and processing steps that are typ-
ically carried out by photographers. Its user interface is
organised into the following modules:

• Library – supports the task of importing images with
flexible controls over how and where they are stored
as well as tasks that involve organising and selecting
them.

• Develop – offers an extensive range of image process-
ing operations, while basic ones for white balance and
exposure adjustments are also available as “quick de-
velop” features in the library module.

• Slideshow/Print/Web – support the tasks of pub-
lishing finalised photographs in various ways, including
on popular Web 2.0 sites such as Facebook and Flickr.

Another distinguishing feature from many traditional desk-
top applications is that Lightroom does not follow the basic
hierarchical model of organising resources, but instead pro-
vides many ways of organising images into different kinds
of logical collections and collection sets. There are also sev-
eral ways in which images can be marked to aid organisa-
tion and search. In addition to tagging, they can be rated,
flagged and labelled with colours. By providing alterna-
tive ways of marking images, photographers are free to use
these as they wish to support their workflow. For example,
while some photographers rely on basic flagging to “pick”
images to be developed [11], others rate images and then
start by processing only the 5-star images using colour la-
bels to mark the stages of image processing [5]. Selecting
the best of many similar photographs is supported by com-
parison views, which can also be used to compare images
before and after processing.

It is beyond the scope of this paper to describe all the func-
tionality of the Lightroom tool. We have highlighted the
main features that provide photographers with advanced,
but flexible, ways of organising large libraries of images and
their work. Lightroom is interesting to be studied as an ex-
ample of a general information management tool both from
the user interface perspective and the way in which it man-
ages the data and metadata. We believe that the flexible
support for the organisation of large data collections and

its powerful data management tools, as well as the holistic
and task-centred approach taken in its design, are the key
reasons behind the success of the tool and enthusiastic re-
sponses from professional photographers, e.g. [11]. While
one approach would be to adopt the same approach and
design method for developing other kinds of information
management tools from scratch, we wanted to investigate
whether using Lightroom as an example could lead to richer
information management tools in other domains such as ref-
erence management or for managing software projects. We
therefore decided to set students the task of designing tools
for these domains based on the Lightroom paradigm in order
to see whether, within a short period of time, this approach
could lead to tools that could at least match, if not improve
on, existing tools in terms of the features supported and how
it supports them. The next sections report on the experi-
ment and the resulting tools.

3. EXPERIMENT
Our experiment took place as part of an Information Sys-

tems Laboratory course at ETH Zurich, which is a semester-
long, project-based Master’s course on information systems
engineering. The goal of this course is for students to gain
experience of working with state-of-the-art methods and tech-
nologies used in the development of information systems.
Four students with programming experience participated in
the experiment and formed groups of two students each. In
a first step, they were introduced to Lightroom and the most
interesting features similar to the overview in the previous
section. One group was set the task of designing and de-
veloping a reference management tool based on Lightroom,
while the other students were asked to devise a system that
would assist in the management of software projects, again
using Lightroom as the guiding example. Hence, the groups
were asked to develop new prototypes for different domains.

The workload per student was 10 hours per week for a
total of 13 weeks, using the first week to develop a project
schedule and set up the development environment and the
last week to prepare a presentation and give a demo of the
resulting prototypes. Each group had weekly meetings with
the supervisor to discuss the progress, but worked indepen-
dently. Although the projects were not tightly specified in
terms of what was to be delivered in order that we could as-
sess the design-by-example approach, the students were still
closely supervised in terms of defining the common steps
and general principles as well as the experiment setup.

In the following, we describe the results in terms of the two
systems, PubLight and ProLight that resulted from the ex-
periment before moving on with our analysis of the method
and formalising the approach. Both systems follow the mod-
ular, task-oriented environment of Lightroom for browsing,
managing and sharing the information assets with the goal of
supporting the research and project management workflows,
respectively. We will first discuss which Lightroom concepts
were considered for adoption and how they translated to the
new domains. We then describe how tasks common to the
research workflow, such as literature review and authoring,
as well as those related to software projects, are supported
in a flexible way based on the Lightroom paradigm.

3.1 Reference Management System
As already mentioned, Lightroom provides modules to ad-

dress the different tasks of photographer workflow. Sim-

Figure 2: Library Module in PubLight

ilarly, PubLight provides different modules which are in-
spired from Lightroom but were transformed to the new
domain.

• Library – supports the browsing and management of
publications.

• Author – provides simple tools for maintaining dif-
ferent versions of research publications, e.g. drafts,
submissions and camera-ready, along with a review
and discussion interface allowing co-authors to provide
comments on different versions of a paper.

• Share/Publish – provides means for sharing parts
of the publication library in the form of references or
reading lists with other users, as well as allowing par-
tial or complete export of the library to BibTeX or
XML-based formats such as RSS and the integration
of a public browsing interface with existing web sites.

Figure 2 shows the library module. On the left, there is
the author panel with author information, collection man-
agement and import tools. The search panel and library
view is shown in the central pane with details of selected
publications in the context-sensitive panel on the right.

Similar to Lightroom, the tool offers a faceted search inter-
face to filter according to a combination of criteria and users
can colour, rate or flag items in various ways to help manage
and search publications. For example, a user might colour
papers according to topic and use flags to indicate which
they have read. Our system also adopts some of the ideas
of smart collections from Lightroom, but currently these are
limited to saved searches rather than pre-defined queries,
and need to be explicitly initiated by users.

For the faceted search interface, it was important to con-
sider the types of queries a user might want to perform
and how they could potentially differ from those supported
in Lightroom. For example, since publications often have
multiple authors, PubLight provides three different search
modes for the Author facet. In the first mode, publications
written by any of the selected authors are displayed. The
second mode shows only those that were co-authored by the
selected authors. The last mode allows publications to be
filtered by first author only. The search can be further con-
strained by specifying terms for full-text search as well as
conditions for user-defined ratings or colours.

Another important difference when moving to research
publications relates to how collections are visualised. In the
case of images, it is obvious to use thumbnails created from
the images. While it would be possible to generate thumb-
nails for PDF documents, they would not reveal much in-
formation and in many cases would look very similar unless
prominent teaser images were used. We therefore instead
decided with the students to create summaries based on the
publication’s metadata such as title, authors, abstract and
publication venue. The grid layout of summaries which may
be coloured, rated, flagged etc. provides a visual means of
organising publications. Yet most existing reference man-
agement systems rely on textual lists with relatively poor
visual cues to the various attributes used to manage them
and limited support for direct manipulation. In contrast,
PubLight enhances reference thumbnails with small, in-place
edit controls which enable users to directly manipulate the
user-defined attributes such as colours or ratings, as well as
managing the order of publications in the collection. The
latter could, for example, be used to guide the writing pro-
cess by deciding the order in which to present related work.

Figure 3: Project Module in ProLight

In addition, it is possible to maintain the state as part of the
authoring process for each paper using the in-place control
in the bottom right of each entry. Our prototype discerns
draft, submitted, accepted and rejected as four possible states
in the publishing workflow.

3.2 Project Management System
The second prototype, ProLight, is similar to PubLight in

that it also maps the core concepts of Lightroom to the new
domain. In the case of ProLight, the students developed the
following core modules:

• Project – supports the organisation and management
of software projects.

• Tasks – provides different tools for managing a project
in terms of packages and tasks.

• Prepare/Release – provides means for preparing soft-
ware releases once milestones have been completed and
supports the actual release process by integrating with
Maven.

ProLight supports the management of software projects in
terms of packages and tasks and distinguishes two types of
projects. One option is that a ProLight project is based on
Maven—a popular software project management tool2 that
can manage a project’s build, reporting and documentation
based on the central project object model (POM). In this
case, the project can be imported from existing Maven POM
files in the form of a new package. Alternatively, projects
can be designed from scratch without the Maven backend.
Figure 3 shows the project management view of ProLight
with the packages and tasks defined for the project in terms
of a graph (left-top) and ordered list (bottom) as well as a

2http://maven.apache.org

detailed view (right). For each task, a lead person, status
and priority can be defined and it is also possible to de-
fine dependencies between tasks so that tasks can only be
marked as finished when all dependent tasks have been done.
Next to the default attributes, each task can also be as-
sociated with additional, project or task-specific, metadata
attributes, which allows for flexible management of differ-
ent kinds of projects and software domains. Like PubLight,
ProLight also puts an emphasis on direct manipulation and
in-place editing of attributes. In addition, ProLight auto-
matically generates a history of all changes related to tasks
and projects as a way of informing multiple collaborators
and documenting the progress.

The planning of software projects can further be refined
in the tasks view shown in Figure 4. Here, tasks can be
assigned to the current package and put in order via drag-
n-drop. Similar to PubLight, the faceted search interface on
the left allows multiple filters to be combined. Note that
any project-specific attributes are automatically available
in the faceted search interface and can be used for filtering.
Based on the data and metadata, it is then possible to check
for open tasks and to prepare new releases. In the case of
POM-file backed projects, ProLight automatically initiates
the respective Maven prepare and release commands on the
console and archives the build report.

4. CONCEPTUAL FRAMEWORK
Our experiment raises the question of whether it is always

best to start by designing the model in interactive systems
design. In previous years of our course, we followed a more
traditional approach by initially focusing the students’ at-
tention on the model of the artefact to be created. In this
project, we explored the benefits of starting from an existing
system, in this case Lightroom, and how it could be used as
a guiding example.

Figure 4: Tasks Module in ProLight

Figure 5 contrasts the example-based technique to the one
described by Calvary et al. [1] which is common to most
model-based user interface approaches. They distinguish
different user interface abstraction levels starting from the
model and an abstract user interface based on the concepts
and tasks to be supported in the interface. The next level
is the concrete user interface as an intermediate represen-
tation of the platform-dependent interface that is, however,
not operational. The transition to the last level typically in-
volves model transformation and code generation to produce
the final user interface for a given context.

The suggested design processes typically unfold along a
four-step, top-down approach starting with domain concepts
and task modelling, followed by subsequent transformation
steps from abstract to concrete and the final user inter-
face. Some approaches support automatic transformation
between some of the levels, while others rely more or less
on the designer to perform the mapping manually. The au-
thoring of model-based user interfaces has been the subject
of extensive research, where one widely studied approach is
MARIA [19]. One of the key benefits of having a more ab-
stract description of the user interface in the form of a model
is that it can be used to generate different user interfaces for
different contexts of use. However, little attention has been
devoted to the use of examples and how they could form an
integral part of the development method.

In contrast to this vertical design process, our experiment
based on the design-by-example technique mainly consisted
of three steps.

1. Extraction In the first step, both teams studied Light-
room and identified the key activities that should also
be at the core of the new information management
tools extracting relevant features from the example user
interface.

2. Adaptation In the second step, the respective fea-
tures from the example user interface were transferred
to the new domains.

3. Reformation In the third step, the new, example-
based user interface was created based on a reforma-
tion and refinement of the features adapted for the new
domain.

In our experiment, the first step resulted in the definition
of three core activities: search and organisation of image
collections using the Library, processing of photos in the
Develop step, and sharing and publishing in the Slideshow/

Domain Model
and Tasks

Abstract UI

Concrete UI

Final UI

Abstract

Concrete

Example UI
Example-based

UI

Domain A Domain B

D
o

m
ain

 K
n

o
w

led
ge

Figure 5: Model-based vs. Example-based User Interfaces

Print/Web views for the different output channels. The sec-
ond step adapted these activities for the reference manage-
ment and software project management domains. In the
third step, the new Library, Author and Share/Publish as
well as the Project, Tasks and Prepare/Release views were
created and refined, respectively. However, in contrast to
the model-based approach, there was no formal reengineer-
ing of Lightroom and also no formal modelling of the new
domain in terms of concepts and tasks involved. Rather,
the process was iterative in nature with students focussing
on individual features, extracting them one by one and then
transforming each of them to the new domains, gradually
producing the example-based user interface.

5. DISCUSSION
The fresh example-based approach resulted in a very fast

development cycle as well as producing rich functionality
even though the team sizes were relatively small and man-
power more limited than in previous course projects. Al-
though both prototypes were implemented in fewer than 13
weeks (with an average of 10 hours per week per student),
the teams produced two fully working systems with rich in-
formation management tools and basic support for collab-
oration among multiple users. Note that, given that the
two student teams had only limited knowledge of the scien-
tific publishing workflow and management of larger software
projects, we provided them with information about the typi-
cal process steps that are involved based on which they then
formed a possible feature catalogue for both systems. There-
fore, the actual domain engineering was not a task carried
out by the students. Rather, the focus was on investigating
how the key concepts of Lightroom could be transferred to
the new domains. In both projects, the students selected the
main concept from the domain model, i.e. publication in the
reference management system and task in the project man-
agement system, respectively. In each case, they developed
thumbnail and detail views together with faceted search in-
terfaces based on domain-specific and user-driven attributes
to browse and manage the data collections.

The most obvious difference when comparing PubLight to
established reference management systems such as Mende-
ley3 or Papers4 is the visual and direct manipulation in-

3http://www.mendeley.com
4http://www.mekentosj.com/papers

Approach Extraction Adaptation Reformation

Bricolage [14] Automatic support—limited to
style and format based on CSS
properties.

Automatic support—restricted to
design; requires prior training of
models to identify similarities be-
tween web pages.

No specific support—requires man-
ual editing of generated web page.

WebML [2] No specific support—manual ex-
traction possible, but also requires
example to be modelled in WebML.

No specific support—but generally
possible based on separate models
for content, navigation and presen-
tation.

No specific support—requires man-
ual editing of generated web site.

MARIA [19] Automatic support—tools for re-
verse engineering, but not all details
can be captured in the logical de-
scriptions.

Not supported—adaptation to user,
platform and device rather than dif-
ferent domains.

No specific support—requires man-
ual editing of generated final user in-
terface.

UsiXML [17] Automatic support—based on
graph transformation.

Automatic support—based on
transformation of task models.

No specific support—requires man-
ual editing of generated final user in-
terface.

Table 1: Comparison of various approaches and tools regarding their support for designing by example

terface since existing tools tend to visualise collections of
publications as lists of titles. Studies on the organisation
of paper documents have shown the importance of visual
cues [20] and the colour labelling offered in PubLight to-
gether with the summaries can help users recognise and
categorise publications according to various criteria. Other
noteworthy features are the grouping of tasks into modules
to provide a clearer separation of workflow stages and the
flexible means of organising publications into collections as
well as within collections. PubLight offers simple yet power-
ful ways of searching for publications based on the concepts
and ideas used in Lightroom while most existing systems
tend to offer pre-defined filters or require users to construct
complex queries.

Previously, we conducted a survey among researchers to
find out about the reference management tools they use and
how they use them for different scenarios such as literature
review and the actual paper writing process [8]. The anal-
ysis clearly showed that existing tools tend to take a data-
oriented rather than task-oriented view and support only
parts of the research workflow. Further, although some of
them offer a lot of functionality, the search process, interface
and organisational capabilities tend to be more limited than
those offered by tools for photographers and hence the proto-
types that we developed based on the Lightroom paradigm.
Interestingly, although the authoring of research papers is a
very collaborative process, the survey indicated that users
are either not aware of the support for sharing in reference
management systems or do not make use of it. This could
indicate that existing reference management systems do not
support the entire research workflow in an integrated way
and that the actual writing process is usually performed
outside of the tool with the sharing of references tending
to occur at the level of merging and editing BibTeX files.
We see potential for PubLight to make a difference here.
While formal user evaluations remain to be done, we have
already begun using PubLight within our research group and
in fact found it useful for compiling and jointly deciding on
the references used in this paper.

We expect similar advantages for ProLight when com-
pared to traditional project management tools that typically
use list and table views or, in some cases, timelines to vi-
sualise the task schedule. One exception is Mylin5 which is
tightly integrated with the Eclipse development environment

5http://www.eclipse.org/mylyn

and itself uses a task-focused interface developed in previous
research [12]. An early prototype of Mylin was shown to re-
duce information overload and make multi-tasking easier for
developers by monitoring programmer activity to maintain
the “task context” that automatically adapts the workspace
and links all relevant artefacts to the task at hand. While
task-oriented design of interactive applications have been
the subject of an extensive body of research (e.g. [18, 19]),
the core principles are often not carried through to and re-
flected at the final user interface level. Both PubLight and
ProLight distinguish themselves by dividing the workflow
into related tasks and organising the interfaces accordingly.

Starting from Lightroom’s interface and thinking about
how the core information management tools provided by
Lightroom could be translated to the new domain, not only
helped the students to quickly come up with a first proto-
type while guiding the general design, but also helped them
to think about the information concepts and how the inter-
actions could be supported based on the example of Light-
room. Even for the new features of their prototypes, which
were not part of Lightroom due to the focus on photographer
workflow, they often revisited the example to get inspiration
for how the new aspects could be incorporated and realised
following the Lightroom paradigm. In particular, this refor-
mation is a crucial step in designing by example. In order
to take this work to the next level, it is therefore necessary
to explore ways of facilitating extraction, adaptation and
reformation.

We have started to experiment with several existing ap-
proaches as the basis for developing a new tool that can
generate applications for different domains based on exam-
ples such as Lightroom. As summarised in Table 1, we have
considered different solutions ranging from Bricolage [14] for
transforming one web site into the design of another, over
WebML [2] that can be used for modelling data-intensive
web sites to MARIA [19] and UsiXML [17] for modelling and
generating complex user interfaces in a platform-independent
way. Analysing them in terms of their support for the core
design-by-example tasks as identified in this paper revealed
several strengths and shortcomings of each approach. We
are currently in the process of developing a new tool that
supports all three of them able to generate simpler versions
of PubLight and ProLight. While this works fairly well for
personal information management because there is usually
a single main entity of interest, e.g. publication and task,

we aim to support more complex data models and advanced
workflows. The goal is to allow non-technical end-users—
who are, however, domain experts—to develop their own
information systems based on existing ones by further ab-
stracting from the underlying models and instead providing
direct manipulation tools.

6. CONCLUSION
Although our initial investigation on the design-by-example

technique is still limited to only a few domains, the results
in terms of speed of development and innovation show great
promise. Based on the experiment presented in this paper,
we have studied the design-by-example technique and iden-
tified the three key steps involved in the process, extraction,
adaptation and reformation. We have demonstrated how
the example-based technique was applied to the develop-
ment of richer information management tools focusing on
Adobe Photoshop Lightroom as an example and how the
most promising features were transferred to other domains.

Our future work will focus on designing new development
tools that specifically support these three design steps. We
also plan additional studies on developers as well as detailed
user evaluations of the prototypes created using design-by-
example to further formalise and improve the technique. Fu-
ture work would also need to, not only investigate the merits
of the technique further, but also explore ways in which good
examples could be identified and shared within the informa-
tion systems community given that the choice of example
would be pivotal to the success of a project.

Acknowledgements
We thank Julien Ribon, Alessandro Zala, Patrick Bänziger
and Lucas Braun for participating in the experiment. This
work was supported by the Swiss National Science Founda-
tion under research grant 200020 134983.

7. REFERENCES
[1] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg,

L. Bouillon, and J. Vanderdonckt. A Unifying
Reference Framework for Multi-Target User Interfaces.
IWC, 15, 2003.

[2] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla,
S. Comai, and M. Matera. Designing Data-Intensive
Web Applications. Morgan Kaufmann Publishers Inc.,
2002.

[3] P. Clements and L. Northrop. Software Product Lines.
Addison-Wesley, 2001.

[4] E. Cutrell, D. Robbins, S. Dumais, and R. Sarin. Fast,
Flexible Filtering with Phlat. In Proc. CHI, 2006.

[5] M. Evening. The Adobe Photoshop Lightroom 3 Book:
The Complete Guide for Photographers. Adobe, 2010.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Addison-Wesley Professional, 1995.

[7] M. Geel, M. Nebeling, S. Leone, and M. C. Norrie.
Advanced Management of Research Publications
based on the Lightroom Paradigm. In Proc. CAiSE
Forum, 2011.

[8] M. Geel, M. Nebeling, and M. C. Norrie. PubLight:
Managing Publications using a Task-oriented
Approach. In Proc. TPDL, 2012.

[9] S. Herring, C.-C. Chang, J. Krantzler, and B. Bailey.
Getting Inspired! Understanding How and Why
Examples are Used in Creative Design Practice. In
Proc. CHI, 2009.

[10] D. Karger, K. Bakshi, D. Huynh, D. Quan, and
V. Sinha. Haystack: A General-Purpose Information
Management Tool for End Users Based on
Semistructured Data. In Proc. CIDR, 2005.

[11] S. Kelby. The Adobe Photoshop Lightroom 3 Book for
Digital Photographers. New Riders, 2010.

[12] M. Kersten and G. C. Murphy. Using Task Context to
Improve Programmer Productivity. In Proc.
SIGSOFT, 2006.

[13] G. Kim. Early Strategies in Context: Adobe
Photoshop Lightroom. In Proc. CHI Extended
Abstracts), 2007.

[14] R. Kumar, J. O. Talton, S. Ahmad, and S. R.
Klemmer. Bricolage: Example-Based Retargeting for
Web Design. In Proc. CHI, 2011.

[15] B. Lee, G. Smith, G. Robertson, M. Czerwinski, and
D. Tan. FacetLens: Exposing Trends and
Relationships to Support Sensemaking within Faceted
Datasets. In Proc. CHI, 2009.

[16] B. Lee, S. Srivastava, R. Kumar, R. Brafman, and
S. Klemmer. Designing with Interactive Example
Galleries. In Proc. CHI, 2010.

[17] Q. Limbourg and J. Vanderdonckt. Multipath
Transformational Development of User Interfaces with
Graph Transformations. Human-Computer Interaction
Series. Springer, 2009.

[18] F. Paternó. Model-based Design and Evaluation of
Interactive Applications. Springer, 2000.

[19] F. Paternò, C. Santoro, and L. Spano. MARIA: A
Universal, Declarative, Multiple Abstraction-Level
Language for Service-Oriented Applications in
Ubiquitous Environments. TOCHI, 16(4), 2009.

[20] A. Sellen and R. Harper. The Myth of the Paperless
Office. MIT Press, 2002.

