
MUBox: Multi-User Aware Personal Cloud Storage

Michael Nebeling, Matthias Geel, Oleksiy Syrotkin and Moira C. Norrie
Department of Computer Science, ETH Zurich

{nebeling,geel,norrie}@inf.ethz.ch

ABSTRACT
Personal cloud services such as Dropbox are used increas-
ingly to support collaborative work, even though they typi-
cally have poor support for tracking files and users’ activities
and collaborators often rely on other communication chan-
nels to be notified of changes. We present a meta-cloud stor-
age service, MUBox, that, independent of a particular cloud
storage service, provides improved support for collaboration.
First, users can switch to activity views that list user activi-
ties rather than files, which is an example of an increasingly
available feature in popular cloud storage clients. Second,
MUBox introduces multi-user aware folder views that embed
information on the last changes performed by collaborators.
These folder views are enhanced based on a new concept of
shadow files which act as placeholders for files that have been
moved or renamed. A user study (N=16) with realistic folder
exploration tasks shows that activity views have a significant
effect on the accuracy and confidence of users in workspace
awareness tasks, while shadow files significantly improve the
speed, accuracy and confidence of users in traceability tasks.
We describe how existing services could implement these fea-
tures as well as a new concept for voting on changes to shared
folders that could improve asynchronous collaboration.

Author Keywords
personal cloud storage; collaborative work; workspace
awareness; file traceability.

ACM Classification Keywords
H.5.2. User Interfaces: Interaction styles

INTRODUCTION
Personal cloud storage services were developed to enable
users to synchronise their personal data across devices. How-
ever, they are nowadays often used for sharing files with
friends and colleagues and even for collaborative work in pro-
fessional settings. Many cloud services let a user share an en-
tire folder with one or more other users. The folder becomes
visible in the other users’ workspaces, where they can add or
modify files and subfolders. While there are some differences
in how various cloud services treat the original owner of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI 2015, April 18–23 2015, Seoul, Republic of Korea
Copyright 2015 ACM 978-1-4503-3145-6/15/04...$15.00.
http://dx.doi.org/10.1145/2702123.2702233

file and the rest of the group, there is no explicit role man-
agement and any user can perform delete, rename or move
actions. As the number of collaborators grows, it becomes
more difficult to be aware of changes and track activities.

Based on our own experiences of using a shared Dropbox
folder as the basis for collaboration in a European project,
we identified a number of common problems. The project
involves more than 25 people from 8 different organisations
spread across Europe. The team decided to use a shared
Dropbox folder as a repository for documentation, deliver-
ables and various forms of media. Given the fairly large num-
ber of contributors, the level of activity in the shared folder is
high, and it is difficult to track the actions of the other project
members. Not everyone is able to closely follow the evolution
of the shared folder and the more time that elapses since the
last check, the more challenging it becomes to understand the
changes. Specifically, we encountered five main problems:

1. Lack of overview of specific collaborators’ activities: It
is difficult to keep track of the activities of other users, es-
pecially when multiple users are responsible for changes.

2. Tracking the origin of files: When a new file or folder ap-
pears, it is not clear whether it has been uploaded (created),
copied from another location, or just renamed. While some
cloud storage providers list the user responsible for the last
modification, the actual activity is often not clear.

3. Tracking files that have disappeared: Likewise, if a par-
ticular file or folder is not at its original location, it may
have been deleted, moved or renamed.

4. Hesitation to delete or otherwise modify a shared
folder: Even though everyone is entitled to make modifica-
tions, collaborators are often reluctant to do so and prefer
to limit their activities to their own files. This problem can
lead to an unwieldy folder structure over time [1, 14].

5. Need for external communication channels: Email is of-
ten used to alert users to activities.

In this paper, we present MUBox—a meta-cloud storage ser-
vice that addresses these problems based on a small set of new
features for asynchronous collaborative use. A key goal in
designing MUBox was to alleviate Problem 1 by raising col-
laborators’ workspace awareness which is integral and crit-
ical to successful collaborative work [5, 13]. We introduce
multi-user aware folder views that embed information on the
last changes of users. We specifically decided to focus on
changes to file locations and filenames, rather than changes
to file contents. We believe these constitute the most impor-
tant activities that users need to become aware of in shared

1

folders. As another way of supporting this, we introduce ac-
tivity views that are activity-centric folder views showing a
history of users’ activities rather than the typical list of files.

We tackled Problems 2 and 3 by supporting the user’s abil-
ity to establish a provenance relationship between files using
backward and forward traceability mechanisms. We are pri-
marily concerned with coarse-grained, file-level traceability
where traces point to old or new locations of the files. Sum-
marising the history of a file or identifying all provenance
relationships based on different versions as done in [10] was
deliberately left out of scope. In a shared folder, delete, re-
name and move activities are more disruptive to collaborative
work than if a file was updated or copied. We develop the
concept of shadow files to show relationships between files
and users’ activities that would otherwise not be clearly vis-
ible. Shadow files are placeholders for files that have been
moved or renamed, so that no files appear missing to other
users. Backward traces will point to previous locations of the
files. Thus, tracking the origin of files should become easier.

We approached Problems 4 and 5 by introducing voting
mechanisms with automatic notifications as a way of encour-
aging all users to modify shared folders. This can be done
using two different strategies, inspired by common practices
in version control systems. In the first strategy, a user can per-
form changes that may be reverted if other users reject them.
In the second strategy, users may suggest changes, but no
changes will be carried out unless approved by other users. In
either case, no external communication is necessary as users
will automatically be alerted via in-built notifications. In par-
ticular, users can delete files without fear that someone may
still need the file or may not be aware of the deletion.

We begin by presenting the background to our work, followed
by a detailed description of MUBox. Then we present the im-
plementation and define a cloud service abstraction to make
sure that our proposal is independent of current providers and
make it easier for future developers to implement the con-
cepts. Finally, we present an initial user study with 16 partic-
ipants that evaluates activity views and shadow folders. The
results show that activity-centric folder views significantly in-
crease users’ confidence and accuracy, but not efficiency, in
understanding the actions of collaborators. On the other hand,
shadow files significantly improve users’ confidence, accu-
racy and speed in understanding file-to-file relationships

BACKGROUND
Insufficient visibility of the activities of collaborators is one
of the major problems in information sharing [18]. A previ-
ous study [17] reports that the lack of notifications and lack
of visibility are some of the biggest problems in file shar-
ing systems. More recent work [16] investigates user expe-
rience with services such as Dropbox and Google Docs for
multiple collaboration scenarios. The interviewed users com-
plained about insufficient visibility of collaborators’ activi-
ties and difficulties in being aware of the parts of the shared
folder for which one is responsible. In [12], it was reported
that users experience problems understanding the functional-
ity of cloud providers because they have inaccurate concep-
tual models of the cloud. The authors propose design guide-

lines that cloud services should adhere to in order to become
more accessible to users: notifying the user when a given file
was last accessed; adding visual status indicators of syncing;
phrasing user messages and labels accurately and unambigu-
ously. The authors also argue that vendors need to work on
a new conceptual model of cloud storage instead of trying
to exploit a familiar paradigm, such as a file system or web-
based collaboration application, in a new setting. Another
study [14] investigating users’ behaviour in group informa-
tion repositories revealed that users almost exclusively touch
files they have created themselves and are particularly reluc-
tant to delete files that could be useful to someone else in
the future. Such behaviour can result in clutter and frustrate
users. One approach to overcome the particular problem of
deletion was explored in GrayArea [1], which extends the
folder view with a grey area at the bottom where users may
drag unimportant files. GrayArea was shown to effectively
reduce folder clutter, but requires major changes to common
file system user interfaces and workflows.

Workspace awareness is known to be an important require-
ment for supporting productivity in collaborative work [5].
In the area of distributed software engineering many differ-
ent ways of promoting awareness have been studied with the
common aim of enhancing a person’s understanding of the
activities of collaborators, as well as increasing knowledge
about tasks and artefacts [13]. Many of these are text-based:
email, mailing lists, chats (instant messaging or group chats),
RSS feeds and wikis. Collaborators frequently use version
check-in logs in configuration management systems and com-
mit logs in revision control systems to familiarise themselves
with the actions of other users. Many proposed solutions use
some form of tagging. For example, Jazz.net, CASS [9] and
Augur [7] all use tags to help developers navigate the code
and subscribe to notifications on topics of interest.

Others mainly focused on exploring the relations between
software project entities and visualising them, e.g. Rational
Team Concert [3]. Here, visualisations provide a view of the
project that users can quickly grasp, thereby improving trace-
ability of software components. The authors argue that this,
in turn, helps to increase developers’ awareness. Another
approach is to track developers’ interactions. For example,
FASTDash [2] provides information about which class and
method a given developer has currently checked out and is
working on, signalling potential conflicts. Information about
developer interactions and artefact relations can be combined.
For example, Team Tracks [4] marks more frequently ac-
cessed parts of the code as more important. Further, in My-
lyn [11], a notion of time was added so that more recently
accessed artefacts are given an increased weighting.

In the domain of personal file sharing, providing informa-
tion on file provenance, i.e. on the history of ownership and
operations performed on the file [8, 15], is considered a
key factor for improving awareness. Various systems that
capture and manage provenance information have been de-
veloped, some of them application-specific. For example,
Chimera [6] was developed for use with large scientific data
repositories, storing data derivation procedures and derived

2

Figure 1. Main features of MUBox: a) notifications on changes suggested by other users, b) multi-user aware folder views highlighting last changes by
others, e.g. Bob renamed Requirements to Archive, and c) shadow file with trace, e.g. Bob moved report.tex to the Report folder.

data and letting users query the data and provenance meta-
data using a domain-specific language. In contrast, FiPS [15]
is an application-independent provenance system that could
be added on top of any conventional file system and imple-
mented as an operating system kernel module. It manages
files as well as file provenance information by intercepting
file system calls used to collect metadata that let it recreate
the history of a file. Such provenance data was also used
by Karlson et al. [10] who developed a copy-aware file sys-
tem by hooking into the operating system and office applica-
tions to capture what they refer to as “copy events”, e.g. Save
As, Attach and Copy/Paste. Using this information, they con-
structed a new folder visualisation that included provenance
relationships on different versions of files. Users found the
new folder visualisation especially useful to make sense of
unfamiliar data, e.g. their co-worker’s folder.

Our first step was to review some of the most popular per-
sonal cloud services: Dropbox, Google Drive and OneDrive
to identify typical shortcomings. As an example, in some ser-
vices, when a user renames a file, it is regarded as newly cre-
ated, and the file with the old name is displayed as deleted.
Possible problems encountered by collaborators are, firstly,
that the old file is marked as deleted, thus possibly confusing
the rest of the team, and, secondly, that there is no apparent
connection between the old and new filenames. Users would
need to restore the old file first and compare it with the new
file to see if they actually have the same content. Moreover,
for files moved by another user to a different folder, other
folders would have to be checked manually or a global search
had to be performed.

In summary, cloud storage providers have only begun to add
support for collaboration and different providers have opted
for different techniques. Google Drive has presence indica-

tors, chatting capabilities and an activity stream. Dropbox
allows users to inform collaborators via email without leav-
ing the web interface and also provides a list of events in all
of the user’s workspace or in a specific shared folder. Given
the aforementioned shortcomings, we decided to experiment
with new features to improve the folder sharing experience
and make awareness of the other users’ actions and file trace-
ability easier to achieve.

MUBOX
MUBox (Figure 1) is a meta-cloud storage service with a
web-based front-end through which users can access Drop-
box and Google Drive accounts. While it resembles common
interfaces, it is independent of a particular cloud storage solu-
tion and other providers could be easily integrated. MUBox
is a lightweight, yet highly configurable, system allowing in-
dividual features to be turned on and off as required.

After a user logs in, they are presented with the folder view
shown in Figure 1b). A grid with three columns displays the
folder structure. The first column, Name, contains a list of
folders and files ordered alphabetically. For each entry in the
list, the second column specifies the Kind in terms of four
categories: regular file, deleted file, shadow file and shared
folder. The Last change column can display different infor-
mation depending on the experimental settings. The mini-
mum functionality is to display the username of the user who
made the last change to the entry. If shadow folders and traces
are enabled, the column also displays the last operation per-
formed on the file and may also show a backward or forward
trace. In the case that a user other than the current user was
responsible for the change, that user will also be listed.

If the user clicks on a file row in the grid, the grid header
displays a row of buttons signifying file operations. Alterna-

3

Figure 2. Activity views are shown as a grid that can be sorted and filtered by Action, Filename, Username, Date, Details. Possible actions are:
newfolder, upload, move, copy, rename, delete. Details describe activities using verbs, “Created” (for new folder), “Added” (for file upload),
“Moved”, “Copied”, “Renamed”, “Deleted”, along with the responsible users.

tively, a user may right-click the file row and display a context
menu listing the same operations. Usual operations for a file
are: download, show versions, delete, rename, cut and copy.
Cutting or copying a file followed by pasting let the user move
or copy the file to a different folder. For a folder, the opera-
tions are: share folder, delete, rename, cut and copy. Clicking
a hyperlink displaying the filename starts a download of the
file. Clicking a folder name opens that folder.

Below we describe the three main ideas implemented in MU-
Box to improve awareness, traceability and asynchronous
collaboration: activity views, shadow files and voting. One
key design goal was to maintain the simplicity. All the
proposed collaboration features are either toggable (activity
views/shadow files) or can be configured on a per-folder ba-
sis (voting). The design rationale is that the new aware-
ness/traceability features should only be shown if the user
has a concrete information need, but otherwise they should
not increase the complexity of the system in place.

Activity-centric Folder Views
As a first step towards improving awareness, we introduced
activity views (Figure 2) that list users’ activities rather than
files and folders. The user can switch to the corresponding
activity view from each folder in order to access the follow-
ing activity information: the name of the activity, the affected
file or folder, the user who made the change, the time of the
change, and any relevant details. In the case of a rename,
move or copy, the details would include either the source or
the destination file or folder. When the user hovers the mouse
cursor over the filename, a tooltip displays the relative path to
the file at the time the operation was completed. Our design
of activity views differs from Dropbox’s events or Google
Drive’s activity stream in two important ways.

First, it is essentially a different view of the folder rather than
a log file based on journal-style text entries similar to Bob
renamed Paris.jpg to Eiffel Tower.jpg on
16.04.2014. Activity-centric folder views are based on
grids that show one operation per row and details of each
operation in dedicated columns. The grid is both searchable

and sortable by column. The search fields for each column
allow the user to filter the rows, while sorting controls
the order of rows. Since MUbox can distinguish between
moved/renamed and newly uploaded files, a user may first
filter by action, e.g. upload, and then by date to quickly get
an overview of files that have been uploaded at a given time.

Second, we decided to present the activity information start-
ing from a given folder and including all subfolders. We think
this is a good trade-off as opposed to showing the activities
for the entire workspace or limiting the view to only a single
folder. The deeper in the folder hierarchy the user descends,
the more specific the activity view becomes.

Shadow Files with Backward/Forward Traces
To keep track of deleted files (or folders), some providers
such as Dropbox show a placeholder together with the infor-
mation, “deleted file”, at the previous location. We propose to
extend this concept to track renamed or moved files and pro-
vide a link to the new location. Specifically, MUBox intro-
duces the concepts of shadow files and forward and backward
traces, allowing users to explore file provenance.

From the user’s point of view, a shadow file is a placeholder
used to indicate that a file has been renamed or moved to a dif-
ferent folder. In existing cloud storage services, such files are
usually shown as deleted, which misrepresents the activities
that resulted in the change and may therefore lead to confu-
sion. Therefore, we explicitly distinguish shadow files from
deleted files with the goal of making it clear to the user that
a given file is in fact not deleted and exists under a different
name or path in the shared folder. The Show Deleted/Shadow
button shown in Figure 1 lets the user show or hide deleted
and shadow files. MUBox lists all files in the same folder
view, but visually separates regular files from deleted and
shadow files by greying out the latter similar to how many
operating systems show hidden files on demand.

Our notion of traces is closely related to shadow files. Figure
3 illustrates the two concepts. Forward traces are attributes of
a shadow file that point to the new name or new location of

4

Figure 3. Shadow files are placeholder files shown in gray as part of
the folder view. The concept above illustrates forward and backward
traces. The file Vacation 01.jpg was renamed to Paris.jpg, and
the forward trace of the corresponding shadow file Vacation 01.jpg
points to Paris.jpg. The file Report.docx was moved to the folder
Important, and a backward trace points back to Work.

(a) Forward trace

(b) Backward trace

Figure 4. After moving report.tex to a subfolder Report, a shadow
file is shown at the original location with forward trace and the file at the
new location shows a backward trace.

that file and occur after a rename or move operation. Back-
ward traces are links from a current file to its source file. The
source file may have been moved, renamed or copied. Thus,
using our terminology, a backward trace is either a connec-
tion between a regular and a shadow file (in the case of mov-
ing or renaming) or between two regular files (in the case of
copying). We decided for both a forward trace and a back-
ward trace to provide the user with as complete information
as possible. Entering a folder and glancing at the trace in-
formation should make it clear whether new files have orig-
inated from another location or are indeed newly uploaded
files. Therefore, preserving both kinds of traces as opposed to
only forward traces, makes navigation within the workspace
more flexible. A trace is visualised simply as text and a hy-
perlink in the Last change column that tells the user the old or
the new location of a file. Forward traces are displayed next to
the shadow file to which they correspond (Figure 4(a)). Back-
ward traces are displayed next to the file that was created as a
result of a rename, move or copy operation (Figure 4(b)).

Shared Folders with Voting Strategies and Schemes
MUBox also aims to encourage more active asynchronous
collaboration. To this end, we propose voting capabilities
with an integrated notification system so that users can per-
form file operations without the fear of interfering with their
collaborators’ work. We differentiate between voting strategy
(determines when a change is applied) and a voting scheme
(determines how changes can be rejected/approved). Depend-
ing on the voting strategy, the change may be performed im-
mediately, with the possibility of reverting it later, or per-
formed later after approval. Additionally, whenever a user

makes a disruptive change (i.e. delete, rename or move) to a
file in a shared folder with voting enabled, the other users will
receive a notification and may vote immediately or postpone
their decision.

We believe that introducing such a voting system will not
only increase the visibility of collaborators’ activities, but
also function as a safeguard and encourage team members
to be more active in carrying out folder maintenance tasks,
without waiting for the original owners to clean up their files
and folders. We refer to the process when votes are collected
and evaluated as the “voting process”.

Since voting is a rather heavy process in contrast to
lightweight aspects of cloud file sharing, it should only be im-
plemented where necessary, for example, for folders that con-
tain deliverables or business-critical files. As a consequence,
it can be configured on a per-folder basis and is disabled by
default. We decided against taking file and folder ownership
into account in the voting process. First, a straightforward
approach quickly breaks down when it comes to shared fold-
ers since an owner of a folder, i.e. the user that created it,
may not necessarily be the one responsible for its content or
the most active user of that folder. Second, popular services
such as Dropbox have a very basic ownership model typically
limited to top-level shared folders rather than subfolders and
files, and explicit user actions are required to transfer own-
ership. For these reasons and based on our experiences with
the EU project, we felt that an additional access control layer
was not required and might actually work against facilitating
easy collaboration, especially among equal project partners
and with rapidly evolving folder structures.

Voting Strategies
A voting process is regulated by a voting strategy. We have
developed the following two strategies: 1) perform a file op-
eration subject to confirmation, and 2) suggest a file oper-
ation subject to approval. Strategy 1 performs an operation
immediately, notifies other users and starts a voting process.
Only if they vote against the operation, is it reverted. We
have designed this strategy primarily for small teams with the
intention of having minimal impact on existing workflows.
Users can still work with their files as usual and the changes
become instantly visible. However, notifications and voting
in that case can help prevent major changes from going un-
noticed and to correct mistakes. Strategy 2 allows any user
to suggest an operation. The other users are then notified and
the operation is only performed if approved. This strategy
is well-suited to model more rigid workflows, for example
weekly reviews of changes.

The difference between the two strategies is also reflected in
the user interface. If a file is to be renamed with Strategy
1, the context menu option for files says “Rename (voting)”.
With Strategy 2, “Suggest rename” is displayed instead. Out-
side of voting-enabled folders, the menu item is simply “Re-
name”. This ensures that users are aware of a) whether voting
is enabled and b) if it is, which strategy is in effect. In the
following, we will refer to the first strategy as confirmation
strategy and to the second as approval strategy.

5

Scheme Strategy Default Action
Veto
(with time constraint) Either Accept

Percentage
(with time constraint)

Confirmation Accept

Approval Reject

Percentage
(without time constraint) Either None

Table 1. Voting scheme/strategy combinations ordered from least to
most intrusive to optimistic workflows (accepting most voting processes).

Voting Schemes
Complementary to the voting strategies, we offer two dis-
tinct voting schemes. A voting scheme is a rule governing
the decision on users’ votes and when a voting process can be
closed and the change either accepted or rejected. We derived
the following schemes, which are inspired by well-known
decision-making principles: i) percentage with or without
time constraint and ii) veto with time constraint.

The percentage scheme is a variant of the majority vote that
accepts a vote if the majority of a certain percentage of users
vote in favour of the change. With that scheme, one can spec-
ify the percentage of users that need to participate in a ma-
jority vote before it is closed and evaluated. The core idea
is to be able to lower the overhead which voting processes
often carry with them. For example, a team-wide majority
vote (100 % participation rate) might be unproductive in large
teams because it can take a long time to collect all the votes.
By contrast, having a lower percentage allows a few active
users, e.g. core team members, to vote on changes quickly.

In contrast, the veto scheme rejects an action as soon as a
single person with the power of veto votes against it. In our
design of this scheme, any user has the veto power and can
thus revert a change immediately. Veto power is particularly
useful for teams with a designated leader who assumes the
role of guardian or maintainer of a shared folder. If this is the
case, the other team members may choose to simply mute the
notifications by MUBox for that particular folder.

For both voting schemes, a configurable time constraint spec-
ifies a timeout after which a voting process is aborted with a
default action. That default action depends on the particular
combination of voting strategy/scheme chosen and is sum-
marised in Table 1.

The percentage scheme combined with the confirmation strat-
egy has the default action to accept, whereas the approval
strategy defaults to reject if no consensus was reached within
the given timeout. The implicit acceptance of changes in the
former combination assumes an optimistic workflow and is
most effective if most voting processes are likely to get ac-
cepted. In this case, a rejection may cause a major inter-
ruption to the workflow, which can be used intentionally to
send a strong signal to collaborators that there is disagree-
ment. With the veto scheme, the default action is always to
accept a change, regardless of the current strategy. Due to
its nature, the veto scheme works only in conjunction with a
time constraint, whereas the percentage scheme can also be
used without any timeout. In the latter case, a decision can

Figure 5. Voting scheme selection while sharing a folder

Figure 6. Notification badge and a voting alert dropdown

only be reached after enough users have voted, making it the
most rigid voting process available.

Sharing Folders and Ownership
MUBox allows any folder to be shared via a context menu.
Figure 5 shows the modal dialogue presented to the user at
the time of sharing the folder “Photos”. The figure shows the
selection of Alice and Bob as team members for this partic-
ular folder. The selected voting scheme is “Percentage with
time constraint” and at least 30 % of the users have to vote
on changes within 3 hours. The person who initially shared
the folder (the owner) can later change the voting scheme and
add or remove collaborators. The other collaborators do not
have such privileges.

The choice of the “right” strategy/scheme is ultimately a so-
cial rather than a technical issue. Consequently, we do not im-
pose or mandate one particular combination, but rather strive
to provide the necessary configuration options to allow team
leaders to model a wide range of organisational processes.

Notifications and Voting
After a user initiates a voting process by performing a disrup-
tive operation, the user’s vote is saved as a vote in favour of
the change and notifications are sent to the collaborators. If
they log into MUBox during the voting process, a red notifi-
cation badge in the upper right corner of the screen informs
them about ongoing votes. They can open the notification
dropdown and choose to accept or reject the operation, as
seen in Figure 6. After the change is accepted or rejected,
a notification is sent to the vote initiator. MUBox can also
show an overview of all pending voting processes in which
the current user can cast a vote or exercise their right of veto.

IMPLEMENTATION
MUBox is implemented as a web application to facilitate de-
ployment in distributed multi-user settings and provide a con-
sistent user experience across different platforms. It com-

6

Method Name Description
getDeltaData(<delta cursor>) Retrieves a list of changes.
createFolder(<path>) Creates a folder.
shareFolder(<path>, <owner>, <user>) Shares a folder with another user.
upload(<parent path>, <file name>) Uploads a file to folder.
copyOrMove(<action>, <from path>, <to path>) Copies or moves a file/folder.
rename(<old path>, <new path>) Renames a file/folder.
delete(<path>) Deletes a file/folder.
undelete(<file>) Restores a file/folder.

Table 2. Cloud abstraction methods

prises two components: 1) a service front-end on the client-
side, and 2) a server-side web service that hosts the cloud
abstraction layer and provides a persistence layer for the ap-
plication. The service front-end is a client-side JavaScript
application developed using AngularJS1 and UI Bootstrap2.
The client communicates with the server via HTTP calls to a
REST-style interface using JSON for data exchange. The im-
plementation of the web service is based on Spark3. Spark’s
primary abstraction is a route which maps HTTP methods
(i.e. GET, POST, DELETE etc.) and URL patterns to call-
backs that implement most of the business logic and calls to
the cloud abstraction and persistence layer. To ease develop-
ment, all layers have been implemented in Java and run within
the same JVM as the web service. We will now explain each
of the layers in more detail.

Cloud Abstraction Layer
To achieve a provider-independent solution, the CloudStor-
age interface provides a cloud storage abstraction for uniform
access to vendor-specific protocols and API calls. This al-
lows us to seamlessly switch between different cloud stor-
age providers without having to adapt the web interface.
The CloudStorage interface (without authorization) is sum-
marised in Table 2. Each method additionally expects a user
parameter which has been omitted for brevity. As proof
of concept, we implemented the interface for Dropbox and
Google Drive since both offer mature Java SDKs for their
services and have gained widespread adoption.

Most interface methods are straightforward and can be easily
mapped to existing cloud storage services. The getDeltaData
method initialises the local copy of the cloud storage folder
structure and keeps it synchronised with the underlying cloud
storage provider. The first time this method is called, the im-
plementation queries the cloud storage service for the entire
folder structure of a user’s account. The call also returns a
token, i.e. delta cursor in Dropbox and change ID in Google
Drive, that can be used in subsequent calls to get only the
changes that have taken place since the last call.

A notable challenge arose when shareFolder had to be imple-
mented. At the time of writing, Dropbox did not have a public
API to share folders programmatically with other users. Even
worse, folder metadata retrieved via the official Dropbox API
neither indicated with whom this folder has been shared nor
if the folder was shared at all. As a workaround, users have
1http://angularjs.org/
2http://getbootstrap.com/
3http://www.sparkjava.com/

to share folders manually via the official Dropbox web in-
terface and then specifically mark those folders as shared in
MUBox. On the other hand, folder sharing is supported in
Google Drive and the implementation therefore straightfor-
ward. Another limitation of the Dropbox API is the inability
to restore an entire deleted folder. To restore a folder, one has
to recursively restore the files originally stored in this folder
and all its subfolders.

Another issues is the unification of file identifiers. In Drop-
box, file paths are unique by design and used as identifiers. In
Google Drive, however, paths are not unique and a global file
id is used instead. We decided to adopt the Dropbox approach
and access files and their metadata through our cloud abstrac-
tion layer using a combination of a unique path and user ID.
To achieve interoperability with Google Drive, we internally
maintain a mapping between paths and Drive’s file ids, which
are passed to Drive API calls when necessary.

As a consequence of adopting unique file paths, there cannot
be more than one file with the same name in any given folder.
Since this is the case in all major desktop file systems, such
behaviour corresponds to the mental model that most end-
users have of file structures and is an acceptable tradeoff.

Persistence Layer and Data Model
To realise the back-end of MUBox, we use MongoDB, a
document-oriented NoSQL database. MongoDB stores data
objects as JSON-like documents in binary format. Docu-
ments are grouped into collections which are mainly organ-
isational, i.e. documents contained within them do not need
to follow a specific schema. Having a flexible schema while
experimenting with the data model allowed us to test our as-
sumptions quickly. Moreover, data is exchanged as JSON,
which facilitates integration with the MUBox web applica-
tion because there is no need for serialisation.

For each user, we store a complete copy of the file hierarchy,
i.e. metadata only, in the database. Each file node is stored as
a single document in MongoDB. Whenever the folder struc-
ture is modified via the MUBox web interface, we update the
metadata in the database and call the CloudStorage API to
propagate the updates to the corresponding storage provider.
We do not access the content of files in the cloud storage un-
less there is a user request to download a file.

To model hierarchical folder structures, the approach of ma-
terialised paths is used. For each filedata document, we store
the complete path with / as separators including the filename.
A single MongoDB query using a regular expression is suf-

7

ficient to select only the files in a given folder or all the de-
scendants of a given folder. During normal interaction with
a cloud storage client, users spend considerable time navigat-
ing the folder hierarchy. Therefore, looking up file metadata
is one of the most frequent database queries. Using materi-
alised paths not only makes querying easy and efficient, but
also lets us use the same path in database queries as well as
calls into the cloud storage APIs. If a folder is shared, the
shared folder hierarchy is replicated for each user with whom
the folder has been shared with. This approach made it easy
to experiment with different views of the folder structure for
each user if necessary.

EVALUATION
We conducted controlled experiments to evaluate users’ ef-
ficiency, accuracy and confidence using activity views and
shadow files with traces. For the voting system, we are plan-
ning a deployment of MUBox and a longitudinal study in the
context of the EU research project mentioned earlier.

Method
We used a within-subjects design involving two experiments
to evaluate 1) activity views and 2) shadow files and traces.
Each experiment involved one task with the respective MU-
Box features turned on and one task with them turned off. We
have refrained from direct comparison to existing personal
cloud storage services and used MUBox in all tasks for better
control. But the off conditions are similar to using Dropbox
and hence provide a baseline. Also, we were only interested
in comparing task performance within, not between, experi-
ments. The off conditions used the same MUBox config but
different tasks, and so results cannot be assumed to be equal.

Experiments and task order were rotated and counterbalanced
to reduce carryover effects. Each task required participants to
familiarise themselves with a shared folder structure different
for each task. Before beginning the task, participants received
a printout with a diagram of the folder structure. They were
also shown an incomplete folder structure in the MUBox in-
terface and asked to complete it so that it matched the struc-
ture on paper. In each task, completing the structure meant
they had to create one empty folder and upload two files.
The files to be uploaded were provided. The folder hierar-
chy completion was not part of the task per se, but it was our
attempt to familiarise the users with the system and each of
the shared folders. Then the actual study started. Assuming
that the printout of the folder structure contained the initial
hierarchy, the user was demonstrated what this folder struc-
ture looked like after two collaborators made changes to some
files and folders. The collaborators were always two users
with the names Alice and Bob. To save time, we pre-created
the folder structure with the changes made. After participants
saw the modified folder structure, they were given a question-
naire, and the timing started. Participants needed to use the
available features in MUBox to fill in the questionnaire that
tested their understanding of exactly what changes took place
in the shared folder. When the users reported completion of
the task, the timing stopped.

The goals of our experiments were to verify whether the
features improved workspace awareness and file traceability.
Our approach was to test the time it took to perform the task,
the accuracy of the responses and the users’ own estimates of
their confidence, which they provided in post-task question-
naires. Because of the way the tasks were designed, we could
argue that the time it takes to perform the task, as well as
the user’s confidence and accuracy while performing it, can
be signs of whether the user is aware of the activities of the
teammates and whether file history is traceable. Although we
could obtain such indirect evidence, we cannot claim that the
features actually improve awareness or traceability.

Evaluating Activity Views
We have argued that activity views may help users be more
aware of others’ activities and improve workspace awareness.
We expected that the use of activity views would let partici-
pants do the task in less time, answer more questions cor-
rectly and be more confident in their answers. We developed
an awareness questionnaire that contained the names of the
collaborators, Alice and Bob, and asked participants to list
the file operations each collaborator had performed. In both
scenarios used for the tasks, each collaborator performed the
following actions: creating a folder, uploading a file, renam-
ing a folder with one file in it, copying a file and moving
another file. Participants’ answers were considered correct
if they specified 5 correct operations per user, including the
name of the operation (e.g., “copy”) and the destination if ap-
plicable (for copying, moving, renaming). If the user listed
other changes, they were ignored for the score. Participants
received partial points if parts of the answers were correct.
Shadow files were disabled for the duration of the two tasks.
In the off condition without activity views, the user had to
make educated guesses using the normal folder view. For ex-
ample, if a file with a new name appeared in the shared folder
and no other changes were apparent, one could assume that
the file was uploaded. If a file with the same name appeared
in a different folder, the best guess would be that the file was
copied. In the on condition, participants could navigate to
the folder’s activity view and see the list of changes. All our
participants chose to consult activity views for the task.

Evaluating Shadow Files and Traces
Our first goal was to test whether the use of shadow files with
traces improves file traceability and lets the user understand a
file’s immediate history. If this was the case, enabling shadow
files should reduce the time it takes to do the task, increase the
number of correct answers the users give, and boost the users’
confidence in their own correctness. The two test collabora-
tors, Alice and Bob, each made the following changes: cre-
ating a folder, uploading a file, copying a file, moving a file,
renaming a file and deleting a folder with two files in it. We
developed a traceability questionnaire with 5 questions that
concerned particular files and asked participants what hap-
pened to those files. The questions were about the two files
that were renamed, two files that were moved, and the deleted
folder. Participants had to select the operation performed on
the file and write the name of the user who performed it. In
the case of a move or a rename operation, they were also
asked for the final name or location of the file. Participants

8

0
120
240
360
480

Activity
OFF

Activity
ON

Shadow
OFF

Shadow
ON

Mean time
Experiment 1 Experiment 2

(a) Mean task completion times (in sec-
onds)

0%
20%
40%
60%
80%

100%

Activity
OFF

Activity
ON

Shadow
OFF

Shadow
ON

Median accuracy
 Experiment 1 Experiment 2

(b) Median accuracy (percentage of correct
answers)

1

3

5

7

Activity
OFF

Activity
ON

Shadow
OFF

Shadow
ON

Median confidence
 Experiment 1 Experiment 2

(c) Median confidence (user’s self-reported
confidence, min=1, max=7)

Figure 7. Results of within-subjects experiments (N=16) with activity views and shadow files disabled/enabled (off/on). Error bars show standard error.

could get partial credit if parts of answers were correct. Ac-
tivity views were disabled for the duration of the two tasks.
In the off condition without traces, it was not possible to say
conclusively who deleted a given file. Therefore, we accepted
“it was deleted” without the username specified.

Results
We had 16 participants (5 female), aged between 23 and 31
(median age: 25.5), all with Dropbox experience, and 12 of
them were also Google Drive users. First, Figure 7(a) shows
mean completion times for both tasks per experiment. As can
be seen, there is a larger difference in the average times for
the tasks involving shadow files than the tasks evaluating ac-
tivity views. Second, Figure 7(b) shows the median accuracy
of the users. Using accuracy as a discrete measure, we refer
to it as the number of points participants got for their answers.
The maximum was 16 for the activity views tasks and 9 for
the shadow files tasks. Finally, Figure 7(c) shows the median
confidence of the users for all the tasks. In our experiments,
confidence was a discrete value, from 1 (least confident) to
7 (most confident). In general, the differences between con-
ditions look more pronounced for the shadow files than for
the activity views tasks. In both experiments, the accuracy
and confidence ratings were higher and showed much smaller
variance in the on conditions.

For significance testing, we used built-in R functions to eval-
uate the results. The null hypothesis was that the measure-
ments with the feature enabled and without it are not signifi-
cantly different. The alternative hypothesis was that the mea-
surements are significantly different. The independent vari-
able was the presence of a particular feature. The dependent
variables were the task completion time, the participant’s ac-
curacy, and the participant’s own subjective estimate of their
confidence. For ordinal quantities, such as accuracy and con-
fidence, we ran the Friedman rank sum tests. If the p-value
obtained in the test was less than 0.05 and therefore signifi-
cant, we ran the Wilcoxon signed rank test to verify the sig-
nificance of the result. Since the time it takes to do the task is
a continuous measure, we ran the repeated measures ANOVA
test as pairwise t-tests with the Holm correction. A p-value
< 0.05 meant the result was significant.

For the activity view-related tasks, there was no significant
effect on the time it took to do the tasks (p > 0.22). However,
there were significant effects on confidence (p < 0.003) and
accuracy (p < 0.009). Presence of shadow files and traces had

a significant effect on the time (p < 0.001). In addition, the
effects on confidence (p < 0.007) and accuracy (p < 0.002)
were also significant. While not all results were significant,
they are particularly encouraging since users showed more
confidence in both tasks with MUBox’s features on.

Based on the results, we can conclude that activity views
appear to significantly increase people’s accuracy and confi-
dence. However, the use of activity views may not be signifi-
cantly faster. On the other hand, shadow files with traces ap-
pear to increase participants’ accuracy and confidence. Fur-
thermore, the use of shadow files can be significantly faster.

Users generally agreed that the tasks were realistic (median
scores of 6 on a 1-to-7 Likert scale for both activity views
and shadow files tasks). This leads us to believe that the re-
sults of the study could also have an impact on real-life shared
folder maintenance needs. We also asked the users for other
subjective estimates in the post-task questionnaires. Here, the
users tended to consider both activity views and shadow files
effective features to help them do the tasks (median score of
6 for activity views and 6.5 for shadow files). These effec-
tiveness estimates contrast with the ones in the off conditions
(median of 4 for activity views and 2.5 for shadow files).

In post-study questionnaires, the users gave generally positive
feedback. Specifically, they found that both activity views
and shadow files were useful features (median scores of 7 for
both). They also generally agreed that existing cloud storage
providers should implement features similar to activity views
and shadow files (median of 6.5 for both).

Limitations
We decided to do controlled experiments to demonstrate the
potential of the proposed features. While users found the
tasks to be realistic, there were two limitations.

First, the folder structures in the tasks were similar, but not
identical. We especially strived to make them as similar as
possible for the two tasks that pertained to the same feature.
Each folder hierarchy had 14 files, but could have differ-
ent numbers of folders (5 in the activity views and 6 in the
shadow files tasks). The users were told to assume that file-
names were unique within each task.

Second, opening a file that may have been moved or renamed
to examine its contents can be one strategy to infer the op-
eration performed on the file. When preparing the study, we

9

decided to make all the files empty to keep the experiment
simple. Without the files’ contents, however, participants had
to rely on the uniqueness of filenames in the shared folder
hierarchy, which was a given in the experiment, but is often
not the case in real shared folders. Detailed evaluations of the
proposed features including voting in a long-term deployment
of MUBox in different collaborative settings are planned.

CONCLUSION
There are powerful document management systems (e.g. Al-
fresco, Huddle, SharePoint) designed to support enterprise
document management workflows. MUBox aims to be a
lightweight extension of existing cloud storage solutions such
as Dropbox–i.e. no version control and no heavyweight con-
figuration in terms of file ownership and access control lists.
We considered that the main reason for the vast adoption
of Dropbox and the like is that they are simple and easy to
use. MUBox adds important features for collaboration with-
out adding unnecessary complexity. It was specifically de-
signed to explore minimally invasive features to support col-
laborative work on top of existing solutions. We conducted
controlled experiments to investigate the effects of two of the
features implemented in MUBox and how they aid workspace
awareness and file traceability. Our results are encouraging
and could have an impact in that developers might be more
confident in adopting such features in the future.

First, our study shows that the less invasive features, activity-
centric folder views and shadow files with traces, already sig-
nificantly improve awareness and traceability. Second, an im-
portant aspect of MUBox is that it can be tailored to different
usage scenarios. That is, more advanced features such as vot-
ing and notifications can be turned on/off depending on re-
quirements. Third, our initial user feedback and internal use
of MUBox show that change voting schemes are easily un-
derstandable and useful. In particular, they align very well
with how people work with shared files, but without the need
for external communication such as email.

We think of MUBox as a platform for further research on
extending personal cloud storage services to collaborative
work rather than the final solution. We also note that it is
not our intention to replace existing personal cloud storage
services. Rather, the idea was to show how a system like
MUBox could be designed to implement the proposed fea-
tures for collaborative use on top of existing services. There-
fore, the proposed cloud abstraction layer is an important
contribution of this research. It is important in two differ-
ent ways. First, the abstraction makes sure that MUBox is a
vendor-independent solution so that collaborators can bene-
fit from the same workspace awareness, file traceability and
voting mechanisms across different providers—for now, this
includes Dropbox and Google Drive. Second, the cloud ab-
straction is also meant to provide guidance to future devel-
opers of personal cloud storage services who may want to
implement the proposed features.

REFERENCES
1. Bergman, O., Tucker, S., Beyth-Marom, R., Cutrell, E.,

and Whittaker, S. It’s not that important: demoting

personal information of low subjective importance using
GrayArea. In Proc. CHI (2009).

2. Biehl, J., Czerwinski, M., Smith, G., and Robertson, G.
FASTDash: A visual dashboard for fostering awareness
in software teams. In Proc. CHI (2007).

3. Calefato, F., Gendarmi, D., and Lanubile, F. Adding
social awareness to Jazz for reducing socio-cultural
distance between distributed teams, 2009. Eclipse-IT.

4. DeLine, R., Czerwinski, M., and Robertson, G. Easing
Program Comprehension by Sharing Navigation Data.
In Proc. VL/HCC (2005).

5. Dourish, P., and Bellotti, V. Awareness and coordination
in shared workspaces. In Proc. CSCW (1992).

6. Foster, I., Vöckler, J., Wilde, M., and Zhao, Y. Chimera:
AVirtual Data System for Representing, Querying, and
Automating Data Derivation. In Proc. SSDBM (2002).

7. Froehlich, J., and Dourish, P. Unifying artefacts and
activities in a visual tool for distributed software
engineering teams. In Proc. ICSE (2004).

8. Jensen, C., Lonsdale, H., Wynn, E., Cao, J., Slater, M.,
and Dietterich, T. G. The life and times of files and
information: a study of desktop provenance. In
Proc. CHI (2010).

9. Kantor, M., and Redmiles, D. Creating infrastructure for
ubiquitous awareness. In Proc. INTERACT (2001).

10. Karlson, A. K., Smith, G., and Lee, B. Which version is
this?: improving the desktop experience within a
copy-aware computing ecosystem. In Proc. CHI (2011).

11. Kersten, M., and Murphy, G. C. Using task context to
improve programmer productivity. In Proc. SIGSOFT
(2006).

12. Marshall, C., and Tang, J. That syncing feeling: early
user experiences with the cloud. In Proc. DIS (2012).

13. Omoronyia, I., Ferguson, J., Roper, M., and Wood, M. A
review of awareness in distributed collaborative software
engineering. SPE (2010).

14. Rader, E. Yours, mine and (not) ours: social influences
on group information repositories. In Proc. CHI (2009).

15. Sultana, S., and Bertino, E. A file provenance system. In
Proc. CODASPY (2013).

16. Voida, A., Olson, J. S., and Olson, G. M. Turbulence in
the clouds: challenges of cloud-based information work.
In Proc. CHI (2013).

17. Voida, S., Edwards, W. K., Newman, M. W., Griner,
R. E., and Ducheneaut, N. Share and Share Alike:
Exploring the User Interface Affordances of File
Sharing. In Proc. CHI (2006).

18. Xu, J., Zhang, J., Harvey, T., and Young, J. A Survey of
Asynchronous Collaboration Tools. Information
Technology Journal (2008).

10

	Introduction
	Background
	MUBox
	Activity-centric Folder Views
	Shadow Files with Backward/Forward Traces
	Shared Folders with Voting Strategies and Schemes
	Voting Strategies
	Voting Schemes
	Sharing Folders and Ownership
	Notifications and Voting

	Implementation
	Cloud Abstraction Layer
	Persistence Layer and Data Model

	Evaluation
	Method
	Evaluating Activity Views
	Evaluating Shadow Files and Traces

	Results
	Limitations

	Conclusion
	REFERENCES

