
jQMultiTouch: Lightweight Toolkit and Development
Framework for Multi-touch/Multi-device Web Interfaces

Michael Nebeling and Moira C. Norrie
Institute of Information Systems, ETH Zurich

CH-8092 Zurich, Switzerland
{nebeling,norrie}@inf.ethz.ch

ABSTRACT
Application developers currently have to deal with the in-
creased proliferation of new touch devices and the diversity in
terms of both the native platform support for common gesture-
based interactions and touch input sensing and processing
techniques, in particular, for custom multi-touch behaviours.
This paper presents jQMultiTouch—a lightweight web toolkit
and development framework for multi-touch interfaces that
can run on many different devices and platforms. jQMulti-
Touch is inspired from the popular jQuery toolkit for im-
plementing interfaces in a device-independent way based on
client-side web technologies. Similar to jQuery, the frame-
work resolves cross-browser compatibility issues and imple-
mentation differences between device platforms by provid-
ing a uniform method for the specification of multi-touch in-
terface elements and associated behaviours that seamlessly
translate to browser-specific code. At the core of jQMulti-
Touch is a novel input stream query language for filtering
and processing touch event data based on an extensible set of
match predicates and aggregate functions. We demonstrate
design simplicity for developers along several example appli-
cations and discuss performance, scalability and portability
of the framework.

Author Keywords
Multi-device interface toolkit; multi-touch framework

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces—Input devices and strategies, Interaction styles

General Terms
Design, Human Factors

INTRODUCTION
Application developers face the increased proliferation of new
touch devices, nowadays ranging from smartphones, tablet
PCs and touch notebooks to all-in-one touchscreen solutions,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EICS’12, June 25–26, 2012, Copenhagen, Denmark.
Copyright 2012 ACM 978-1-4503-1168-7/12/06...$10.00.

tabletop systems and interactive walls. Unless an application
is to be designed for a specific device only, it is becoming
increasingly difficult for developers to create interfaces that
cater for the wide range of possible settings. In particular,
there are three major technical and design challenges for cur-
rent multi-touch frameworks: 1) Many technological differ-
ences between touch devices: Multi-touch devices vary in
terms of the amount of touch points they can track simultane-
ously as well as the tracking speed and the support for other
advanced sensing techniques based on accelerometers or tilt
sensors. Some devices such as the Microsoft Surface1 table-
top system provide additional tracking support for tangible
objects in the form of physical tokens, while others are lim-
ited to finger tracking. Available frameworks are therefore
often designed for a specific technological setup, e.g. Dia-
mondSpin [21] or DTFlash [7] for the DiamondTouch sys-
tem [5], and tend to focus their support on either finger or
tangible object tracking [13]; 2) Different software archi-
tectures and implementation methods: Developers require
a wide range of skill sets and experience with different pro-
gramming languages and software development kits (iPhone,
Android, etc.) in order to build applications for the latest
generation of smartphones and tablet computers [3]. Some
frameworks such as PyMT [9] and MT4j [16] therefore in-
stead build on cross-platform programming languages such as
Python or Java and protocols such as TUIO [12] to achieve a
higher degree of interoperability between different platforms
and devices, but this comes at the cost of additional abstrac-
tion layers and requires device-specific drivers that imple-
ment the protocols [6]; 3) Limited support for extensibil-
ity: Existing frameworks are often designed for a single class
of applications only. For example, most of the aforemen-
tioned frameworks are specifically designed for either mo-
bile platforms or tabletop systems and are therefore not eas-
ily extended towards other settings. In addition, the imple-
mentations typically provide a fixed set of basic gestures and
are generally difficult to extend with support for custom and
application-specific multi-touch behaviours. Recent solutions
such as Midas [20] or Proton [14] introduce domain-specific
languages with the aim of supporting developers in the design
and implementation of new gestures, but do not share our spe-
cific goal of supporting multi-touch interface development for
many different devices.

We propose jQMultiTouch—a lightweight web toolkit for cre-
ating multi-touch interfaces that can run on multiple devices.

1http://www.surface.com

Our framework directly builds on top of modern browser en-
gines, such as WebKit2 or Mozilla’s Gecko3, and therefore
carries the potential of providing a lightweight solution for
multi-touch application development based on established and
widespread web technologies. jQMultiTouch is similar in im-
plementation to two recently developed web frameworks, jQ-
Touch4 and Sencha Touch5, but more general in terms of the
concepts and features it supports since both these frameworks
are primarily designed for mobile application development.
More importantly, they suffer from rather limited support for
multi-touch in that interactions can involve only one screen
object at a time. While this may be sufficient on small-screen
devices usually operated by a single user, the potential ben-
efits of larger interactive surfaces, where multi-finger, multi-
hand or even multi-user input can play an important role [11,
24], are not leveraged. jQMultiTouch therefore aims to be
a more general framework that addresses the core require-
ments of multi-touch and gesture-based interactions within
interfaces, but at the same time, does not limit itself to a spe-
cific platform or type of device.

jQMultiTouch is inspired from jQuery6, one of the most pop-
ular web toolkits that has arguably changed the way develop-
ers nowadays implement web interfaces. jQuery is designed
to simplify web scripting tasks such as the selection and ma-
nipulation of DOM elements and handling of events through
the help of callbacks, as well as creating advanced interfaces
and interactions with animations and visual effects that typi-
cally involve sliding and fading of web page elements. jQuery
provides powerful abstractions from low-level implementa-
tion details and resolves cross-browser compatibility issues,
which contributes to the ease of use and design simplicity
for developers. jQMultiTouch is not only similar to jQuery
in terms of the idea of providing a lightweight and general
framework, but also because of the fact that we have adopted
ideas from jQuery and applied them to some of the core con-
cepts. The main technical contributions of our work include
(1) a device-independent method for the processing and han-
dling of multi-touch events within web interfaces, (2) a novel
concept of a touch history that functions as the central source
for event handling which is particularly useful given the more
complex event flows with multi-touch and gesture-based in-
teractions, as well as (3) a toolkit and multi-touch framework
based on only native web technologies that do not require ex-
ternal browser plug-ins.

Applications based on our framework have been successfully
deployed on many new touch devices, including Apple’s i-
Phone and iPad or other Android-based smartphones and tab-
lets, the TouchSmart7 all-in-one PC and tabletop systems such
as Microsoft’s Surface, without the need for switching be-
tween special software development kits. Our decision to
build on web technologies also has other advantages. In par-
ticular, active support for touch input or gesture-based modal-
2http://www.webkit.org
3http://developer.mozilla.org/en/Gecko
4http://www.jqtouch.com
5http://www.sencha.com/touch
6http://jquery.com
7http://www.hp.com/touchsmart

ity within web interfaces is still in its infancy in that multi-
touch interaction in a web context is generally limited to ges-
tures for scrolling and zooming of content as interpreted by
web browsers. The fact that most modern browsers have re-
cently started to integrate support for processing touch in-
put is promising as it means that multi-touch support will no
longer be limited to specific browsers or require additional
plug-ins such as Flash or Silverlight. However, the prob-
lem remains that native browser support still varies consider-
ably in terms of touch event models and default browser be-
haviour due to the lack of standards. For example, Firefox 4
introduced custom MozTouchDown, MozTouchMove and
MozTouchUp events8 with minimal information in terms of
touch coordinates relative to the viewport of the browser and
a unique identifier to track continuous touches of the same in-
put source. On the other hand, WebKit-based browsers, such
as Apple’s Safari which is used on the iPhone and iPad, only
trigger handlers associated with touchstart, touchmove
and touchend which provide additional information that is
absent in Firefox, such as scale factors and degree of rotation
if the commonly associated gestures are currently being per-
formed on the target element. Moreover, the event callback
mechanism differs considerably and touch event data is sep-
arated into all active touches on the screen, touches only re-
lated to the current target element and changed touches since
the last time an event was handled. Again, in Firefox this
important information is missing. For developers, this means
that applications are presented with different input data de-
pending on the browser and therefore considerable effort is
required to eliminate cross-browser compatibility issues. We
argue that solving these problems can enable a new genera-
tion of web interfaces that will start to include carefully de-
signed multi-touch features and therefore bring real benefits
to users when working with applications on a touch device.

We begin by presenting the concepts of jQMultiTouch and
its main features as well as the implementation. This is fol-
lowed by an evaluation of the framework in two parts. First,
we present two applications that we developed based on jQ-
MultiTouch and discuss them in more detail. We then sketch
the range of possible applications and the framework support
for rapid prototyping by showing more examples created by
students as part of an assignment. We close with a discussion
of the performance and extensibility of our framework.

JQMULTITOUCH
In the spirit of jQuery, jQMultiTouch provides abstractions
from low-level multi-touch event handling details as well as
cross-browser support for custom and default gesture-based
interactions with interface elements. Figure 1 shows the four-
layered architecture for applications based on our framework
as well as the main components responsible for multi-touch
support. The framework builds on basic browser support for
multi-touch events available in modern browsers and extends
it with customisable event handlers and attachable behaviours.

8Note that, since Firefox 6, the touch event API has aligned with the
W3C proposal. However, W3C’s Touch Events specification is un-
der active development and browser support not always consistent.

jQMultiTouch Web Interface Toolkit

Multi-touch Web Interface

Modern Web Browser with Support for Multi-touch Events

Implementation 1

Core Components &

Touch History

Mobile

Client
Tabletop ClientDesktop Client

Default Multi-touch

Event Handlers

Attachable Behaviours

Implementation 2 Implementation 3...

Custom Gesture

Handlers
Plug-ins

Widgets

Figure 1: Four-layered architecture for multi-touch web ap-
plications based on our framework with support for different
mobile, desktop and tabletop platforms as well as customis-
able multi-touch event handlers and attachable behaviours.

Applications developed with our framework can run on a num-
ber of different mobile, desktop and tabletop platforms. jQ-
MultiTouch therefore functions as both a run-time environ-
ment and an extensible platform for developers to meet appli-
cation-specific requirements.

To illustrate how jQMultiTouch can be used for multi-touch
interface development, we refer to the simple picture viewing
application shown in Figure 2. The code uses a simple jQuery
statement $(’img’) to select all images loaded into the web
interface and attaches the touchable behaviour provided
by jQMultiTouch (Figure 3). Doing this first of all transforms
all images into touch areas and then associates correspond-
ing handlers by setting options for the default behaviour. In
the example, we allow users to tap and hold images in or-
der to perform unconstrained drag-n-drop operations by set-
ting draggable to true. This means that pictures can be
moved around by translating their x and y coordinates relative
to the viewport. We further enable scaling using pinch/spread
gestures so that users can enlarge or shrink the pictures within
a certain range for the scale factor. This is achieved by set-
ting the scalable option accordingly. Finally, we set the
rotatable option to allow rotation of images by steps of
15 degrees. All features are enabled based on the attachable
touchable behaviour provided by jQMultiTouch.

Core Features
Our framework consists of four components for touch event
handling, touch event tracking and coordination, touch event
capture and delegation and touch device detection (Figure 3).
The core features of jQMultiTouch are built around a unified
method for touch event handling independent of the specific
platform and browser used to execute the interface. For this,
we introduce browser-neutral touchDown, touchMove and

jQMultiTouch: Lightweight Web Toolkit for
Multi-touch Support in Web Interfaces

Author One
Affiliation
Address
E-Mail

Author Two
Affiliation
Address
E-Mail

ABSTRACT
Given the current proliferation and diversity of touch de-
vices often used for web browsing, it is becoming increas-
ingly difficult for web developers to cater for these in a re-
sponsive manner. In this paper, we present jQMultiTouch,
a lightweight toolkit for the design and implementation of
web interfaces with active support for multi-touch interac-
tion based on the popular jQuery paradigm of web develop-
ment. At the core of the proposed framework is the concept
of a central touch history useful for processing a sequence
of touch events, e.g. for simple gesture recognition, and fil-
tering touch data by time, input source as well as target web
page elements involved in interactions. The framework also
resolves cross-browser compatibility issues by providing a
uniform method for handling multi-touch events in browsers.
We present several example applications of this framework
for web interfaces to leverage rich multi-touch interactions,
as well as evaluations in terms of execution performance and
design simplicity for the developer.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Input devices and strategies,
Interaction styles, Screen design.

General terms: Design, Human Factors

Keywords: Multi-touch Web Interfaces, Native Browser Sup-
port, Cross-Browser Compatibility.

$(’img’).touchable({
draggable: true, scalable: { min: 0.4,

max: 2.0 }, rotatable: { step: ’15deg’ } });

Listing 1: Simple picture viewing application based on our
framework, enabling the common drag-n-drop, scale and
rotate actions for images embedded in the web page by
assigning the new touchable behaviour.

INTRODUCTION
We are currently in a period where there is an increased pro-
liferation of touch devices, nowadays ranging from smart-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’11, October 16-19, 2011, Santa Barbara, CA.
Copyright 2011 ACM 978-1-60558-745-5/09/10...$10.00.

(a) Application

Cross-Browser Development Framework for
Multi-touch Web Interfaces

Author One
User Interface Laboratory

ABC Corporation
1234 Anywhere Road

Anytown, NY 10027 USA
+1-212-555-1212

one@abc.com

Author Two
Université de XYZ

5678 rue des Parapluies
99099 Crème de Menthe, FRANCE

+33-12-34-56-78
deux@uvw.xyz.fr

ABSTRACT
Given the current proliferation of touch devices often used
for web browsing, active support for touch input and gesture-
based modality are desirable features also in web applica-
tions. We propose a framework for developing a new gener-
ation of web interfaces with active support for multi-touch.
At the core of the framework is the central concept of a touch
history useful for processing a sequence of touch events, e.g.
for gesture recognition, and filtering touch data by time, input
source as well as origin and one or mulitple target web page
elements. We show how this framework was implemented
using only native web technologies and how it resolves cross-
browser compatibility issues by providing a uniform method
for handling multi-touch events. We also present several ex-
ample applications developed with our framework that lever-
age rich multi-touch interactions designed to support appli-
cation-specific tasks. Finally, the design and performance of
applications based on our framework are evaluated and com-
pared against browser-specific implementations.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Input devices and strategies,
Interaction styles, Screen design.

General terms: Design, Human Factors

Keywords: Multi-touch web interfaces, native web tech-
nologies, cross-browser compatibility.

$(’img’).touchable({
draggable: true, scalable: { min: 0.4,

max: 2.0 }, rotatable: { step: ’15deg’ },
});

Listing 1: Simple picture viewing application based on our
framework, enabling the common drag-n-drop, scale and
rotate actions for images embedded in the web page by
assigning the new touchable behaviour.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’11, October 16-19, 2011, Santa Barbara, CA.
Copyright 2011 ACM 978-1-60558-745-5/09/10...$10.00.

(a) Application

text. We propose a framework for multi-touch web interfaces
whose main technical contributions are (1) a uniform method
for the processing and handling of multi-touch events in web
applications that abstracts from varying support in browsers
while enabling common drag-n-drop, scale and rotate inter-
actions as illustrated in Fig. 1, (2) a novel concept of a touch
history that functions as the central source for event han-
dling and is particularly useful given the more complex event
flows for web page interactions when supporting multi-touch
and gesture-based input, as well as (3) an implementation
of the proposed framework based on only native web tech-
nologies that do not require additional plug-ins. As part of
the evaluation, we present a simple application based on our
framework and compare it with browser-specific implemen-
tations in terms of both design simplicity and execution per-
formance. In addition, we sketch the range of applications
supported by our framework by showing a number of typical
examples known from mobile and tabletop computing.

This paper is structured as follows...

$(’img’).touchable({
draggable: true, resizable: { min: 0.4,

max: 2.0 }, rotatable: { step: ’15deg’ },
});

Listing 1: Simple picture viewing application based on our
framework, enabling the common drag-n-drop, resize and
rotate actions for images embedded in the web page by
assigning the new touchable behaviour.

BACKGROUND
Understanding multi-touch [16] and the use of gestures [9]

Research on multi-touch has recently focused on precise se-
lection techniques [1, 2], comparisons of mouse and multi-
touch [7], different interaction techniques [15]

Low and high-fidelity prototypes [3]

existing multi-touch archictures, e.g. DiamondTouch [4], Di-
amondSpin [19], DTFlash [6]

frameworks, e.g. MT4j [14], PyMT [8] and Midas [18] a
common architecture of these frameworks is derived in [5]

protocols, e.g. TUIO [10]

gesture recognition algorithms [17, 21]

gesture frameworks, e.g. iGesture [20], [12], Microsoft’s
GestureToolkit [13]. more detailed overview of multi-touch
frameworks is provied in [11]

There is an increasing number of frameworks developed to
leverage the potential benefits of touch input in web appli-
cations. For example, Pooky1 represents an early attempt
to provide a web-based solution for multi-touch applications
running in the Firefox browser, but still relies on the TUIO
protocol [10] that requires a separate server for the process-
ing of events and therefore produces significant architectural

1http://pooky.sourceforge.net/

overhead. The latest and less complex solutions include jQ-
Touch2 and Sencha Touch3, both of which have been de-
signed in response to the prevalence of mobile devices with
touch support, such as the iPhone or other kinds of smart-
phones, and are in terms of features and functionality primar-
ily intended for mobile application development. Another
key issue with these solutions is that the support for multi-
touch event processing is still very limited in that interactions
can only involve one web page object at a time. While this
may be sufficient on small-screen devices usually operated
by a single user, the potential benefits of larger interactive
surfaces, where multiple users may collaborate to achieve a
certain task, cannot be leveraged. We have therefore started
to develop a general framework that addresses the core re-
quirements of multi-touch event handling in a web context,
but does not constrain the application domain and allows for
easy integration with existing architectures and implementa-
tions. Our framework directly builds on modern browsers,
such as Safari or Firefox 4, and therefore carries the poten-
tial of providing a lightweight solution for multi-touch ap-
plication development based on established and wide-spread
standards.

Another benefit of bringing multi-touch to the web is that it
can ease the development of remote collaboration tools etc.,
which were often a challenge in previous technological se-
tups. The web has seen a series of more dynamic and rich
interaction techniques, such as AJAX, that allow these issues
to be addressed...

From this brief review of existing works, we note a general
lack of frameworks for multi-touch support in web sites and
applications. There are a number of technical challenges,
some of which are unique in a web context.

Handling touch input. Touch input shares some common-
alities with mouse input since both trigger a series of down/-
move/up events with point coordinates of where the input
occurred. This is perhaps also the reason why, in modern
operating systems such as Windows 7, single touch input
is per default mapped to mouse events with the benefit that
traditional applications remain operational also on touch de-
vices. On the other hand, simultaneous touches are usually
not translated to mouse events and can therefore not be pro-
cessed by traditional event handlers. This raises two major
problems for application developers. First, the fact that sin-
gle touches also fire mouse events is not always convenient,
especially when mouse input should be treated differently
from touch. Second, even the most advanced implementa-
tions for interacting with web content, such as the many at-
tachable behaviours provided by the jQuery UI framework4,
will not work properly with multiple objects at the same time
even if the respective event handling methods are linked to
touch events. The reason for this is that current implementa-
tions typically rely on the fact that there is normally only one
variable to track for the mouse, i.e. the position of the mouse
cursor. Hence, often a single global variable is used to store
the current position, which would then be overridden with

2http://www.jqtouch.com/
3http://www.sencha.com/touch
4http://www.jqueryui.com/

(b) Source code

Figure 1: Simple picture viewing web application supporting
multi-touch based on our framework, enabling customisable
drag-n-drop, scale and rotate actions for images by assigning
the new touchable behaviour.

INTRODUCTION
We are currently in a period where there is an increased pro-
liferation of touch devices ranging from smartphones, tablet
computers and convertible notebooks to all-in-one desktop
solutions, tabletop systems and interactive walls. It is no
longer uncommon that web sites are being accessed from
such devices, but active support for touch input or gesture-
based modality within web applications is still in its infancy
in that multi-touch interaction in a web context is generally
mostly limited to gestures for scrolling and zooming of con-
tent as interpreted by web browsers. The fact that most mod-
ern browsers have recently started to integrate support for
processing touch input is promising as it means that multi-
touch support will no longer be limited to specific browsers
or require additional plug-ins such as Flash or Silverlight.
However, the problem remains that native browser support
still varies considerably in terms of touch event models and
default browser behaviour, and developers generally lack

(b) Source code

Figure 1: Simple picture viewing web application supporting
multi-touch based on our framework, enabling customisable
drag-n-drop, scale and rotate actions for images by assigning
the new touchable behaviour.

phones, tablet PCs and touch notebooks to all-in-one desk-
top solutions, tabletop systems and interactive walls. It is
no longer uncommon that web sites are accessed from such
devices, but active support for touch input or gesture-based
modality within web interfaces is still in its infancy in that
multi-touch interaction in a web context is generally limited
to gestures for scrolling and zooming of content as inter-
preted by web browsers. The fact that most modern browsers
have recently started to integrate support for processing touch
input is promising as it means that multi-touch support will
no longer be limited to specific browsers or require additional
plug-ins such as Flash or Silverlight. However, the prob-
lem remains that native browser support still varies consider-
ably in terms of touch event models and default browser be-
haviour, and developers generally lack frameworks and tools
for adding multi-touch support to their applications. We ar-
gue that solving this problem can enable a new generation
of web interfaces that will start to include carefully designed
multi-touch features and therefore bring real benefits to users
when working with applications on a touch device.

Figure 2: Simple picture viewing web application support-
ing multi-touch based on our framework, enabling controlled
drag-n-drop, scale and rotate actions for images by assigning
the new touchable behaviour.

touchUp events that are then mapped to the specific events
used in browsers. Moreover, the touch data associated with
touch events is normalised so that rotation and scale prop-
erties are provided independent of native browser support.
This is achieved with the help of additional methods for mea-
suring the angle and distance between touch points in order
to determine the scale factor and degree of rotation. The
event callback handlers provided by jQMultiTouch will be
fed with separate information about all active touches and
only target-related ones. This data can then be used to de-
termine whether users interact with other components and
to define interactions between them. In addition to the stan-
dard callback mechanism that may require to create and pass
on custom data between touch events, e.g. for data initialisa-
tion at touchDown, manipulation during touchMove and
clean-up after touchUp events, our framework also provides
a separate gesture callback handler. This handler can then be
used to manage custom data in a central place. Also, methods
are provided to control default browser behaviours and pre-
vent conflicting actions, e.g. for scaling only specific content,
such as images in the previous example, rather than the entire
page. Finally, the framework defines a method for detecting
if the particular device in use supports touch input. If it does,
this will then trigger attached behaviours for touch elements.
Also included is a method for determining the orientation of
the device and a callback mechanism for handling changes.

Touch History Concept
One of the core concepts of the framework addresses the need
for touch event tracking and coordination which is required in
the case of multiple consecutive or simultaneous touches on
one or more interface elements, e.g. for dragging several im-
ages at the same time similar to the previous example. To
track the position of active touches and the order in which
these have appeared and changed over time, jQMultiTouch
introduces the concept of a central touch event history (Fig-
ure 5). While most existing frameworks internally also work

Component Features

Touch event

handling

Unified touch event listeners that work across different browser implementations

Common touch event properties and multi-leveled information about active

touches

Configurable default handlers for common dragging, scaling and rotation

operations

Touch event

tracking

and

coordination

Touch history for keeping track of touch events and changes in touch data

Separate gesture callback handler

Mechanisms to control default browser behaviour and prevent conflicting actions

Touch event

capture

and delegation

Event capture for simultaneous touches on one or more target elements

Event delegation to transfer capture to other elements

Automatic capture release after timeout if no new touch data available for an

active touch

Touch device

detection

Method to detect whether device is touch-enabled

Method to determine orientation of device as well as callback handler for

changes

(a) Feature Overview

Feature Examples Description

$.fn.touchable
$(element).touchable({ draggable: true,

scalable: true, rotatable: true });

Marks the element as touchable and

registers default dragging, scaling and

rotation behaviours

$.fn.touches if ($(element).touches().length > 1) { … }
Returns true if more than one touch was

registered on the DOM element

$.touchHistory $.touchHistory.each(function() { … })
Keeps a record of the entire touch history

and can be used for global analysis

$.touchPrevent

Default
$.touchPreventDefault = false;

Enables default browser behaviour

(default is to prevent default behaviour)

$.touchEnabled if ($.touchEnabled()) { … }
Checks whether touch input is available

on the device

$.touchReady $.touchReady = function() { … }
Registers a callback to be executed on

startup if device supports touch

$.orientation

Changed

$.orientationChanged =

function(orientation) { … }

Registers a callback to handle changes

of the device’s orientation

(b) Features

Figure 3: jQMultiTouch consists of four different components for touch input processing on touch devices. These components
are implemented as a set of jQuery extensions specifically for multi-touch interface development.

Predicate Examples Description

type

history.filter({ type: ‘touchMove’ })

history. filter({ type: [‘touchDown’, ‘touchUp’] })

Constrains history to a single type or set of

down/move/up events

target

history.filter({ target: element })

history.filter({ target: [element1, element2] })

Constrains history to one or several DOM

elements

touch history.filter({ touch: $.touches[0] }) Filters history by the first touch only

finger history.filter({ finger: ‘0..2’ }) Filters history by the first three fingers

time

history.filter({ time: ‘1..100’ })

history.filter({ time: ‘<100’ })

Constrains history to a 100ms time window

(a) Filter predicates

Predicate Examples Description

clientX/

clientY

history.match({ clientX: ‘>550’ })

history.match({ clientX: ‘500..550’ })

Returns true if every touch in the history is

within the position constraints

deltaX/

deltaY

history.match({ deltaX: ‘>100’ })

history.match({ deltaX: ‘>100’, deltaY: ‘+-10’ })

Returns true if the difference between the

positions of the first and last touch event

in the history is within constraints

netX/

netY
history.match({ netX: ‘>100’ })

Returns true if the finger has moved at

least 100 pixels to the right over the

series of touch events in the history

All filter

predicates

history.filter({ finger: 0, time: ‘1..100’ }).match({

deltaX: ‘<-100’ })

history.match({ finger: 0, deltaX: ‘<-100’, time:

‘1..100’ })

Supports also filter predicates as a

shorthand to first constrain and then

match the history

(b) Match predicates

Figure 4: One of the core components is jQMultiTouch’s touch history. The touch query language provides an extensible set of
filter and match predicates as well as aggregate functions for online gesture recognition based on the history of touch events.

with some kind of touch event buffer, we formalise the con-
cept and provide several new ways of making use of it for
uniform touch event handling across different devices.

History Keeping
Figure 5a shows an example of a touch history for the start
of a simple swipe-left gesture. For every new source indi-
cated by a different touch id, a separate stream will be created
in the history and updated with consecutive touchDown,
touchMove and touchUp events. Each of the entries in
the history stores touch data such as the position together with
the target touch area and the time when the touch occurred.
The target is by default locked in consecutive events which
enables a simple form of multi-capture for all active touches.

History Evaluation
To make working with the touch history easier for develop-
ers, jQMultiTouch provides methods for querying and filter-
ing the entries according to a combination of criteria. Figure 4
shows several example queries. In particular, the framework

provides an extensible set of match predicates (e.g. type,
target, touch, finger, time, clientX/Y) and ag-
gregate functions (e.g. deltaX/Y, netX/Y, angle, area)
for evaluating the current touch history. With the help of
these, the history can be filtered by touch id, input source
and target elements as well as limited to only return touch
data of previous events within a certain window of time. For
example, it is possible to compute the delta for a series of
touch points and from that to see how each touch has changed
within a given time frame. Figure 5b shows how the touch
query mechanisms can be used to detect simple swipe left/
right gestures. The code implements an example gesture call-
back handler that is provided with the current touch event e
that triggered the handler and a touch history related to the
target element that binds it. The basic mechanism, in the ex-
ample used to process the history and look for swipe left/right
gestures, is inspired by the way jQuery allows developers to

id = 2

target = ‘element’

x = 112, y = 99

type = ‘touchMove’

timeStamp = ...356

target = ‘element’

x = 136, y = 95

type = ‘touchMove’

timeStamp = ...312

target = ‘element’

x = 153, y = 91

type = ‘touchDown’

timeStamp = ...287

0 1 2 3

id = 5

(a) Excerpt of touch history

Figure 5: Illustration of a touch history where a user per-
formed a swipe left gesture on a web page element. The his-
tory is organised by touch id and filled from left to right.

as well as resolving conflicts between them, and to execute
corresponding actions.

function gestureHandler(e, history) {
if (history.match({ finger: 0, deltaX: ’<

-100’, time: ’1..100’ })) {
// TODO swipe left handler

} else if (history.match({ finger: 0,
deltaX: ’> 100’, time: ’1..100’ })) {

// TODO swipe right handler
}

}

Listing 1: Example code for recognising simple swipe
left/right gestures in jQMultiTouch.

The code shows an example gesture callback handler that is
provided with the current touch event e that triggered the
handler and a touch history related to the target element that
binds it. The basic mechanism, in the example used to pro-
cess the history and look for swipe left/right gestures, is in-
spired by the way jQuery allows developers to script anima-
tions.8 In jQMultiTouch, we apply this concept to define sim-
ple gesture templates programmatically using relative values
for variables to be tracked and compared. The match method
of the touch history therefore takes a gesture template as an
argument and returns true if it matches against the touch his-
tory. In the example, we define two simple templates that look
for touch changes of the x position in the horizontal direction.
The evaluation then first computes the delta between the first
and the last ‘touchMove’ events within the last 100 millisec-
onds (indicated by the 1..100 range expression). This delta
is then compared to the provided value, i.e. swipe left is then
recognised if the x position in the touch data has decreased by
at least 100 pixels, and swipe right if the delta for x is greater
than 100. Note that, for more complex gestures, the match
method of the touch history can also take an array of gesture
templates and will then return true only if they all match the
given criteria. Distinct or partly overlapping periods defined
for the time variable in templates can then be used to define
composed or sequential gestures and to increase sensitivity of

8http://api.jquery.com/animate/

gesture recognition. Also note that the templates used for ges-
tures can also be shared between different callback handlers
by using global variables instead.

History manipulation
Finally, the touch history provides several methods for ma-
nipulating the touch history. For example, overriding the tar-
get of a touch event provides a basic mechanism for dele-
gating touch events so that the capture can be transferred to
elements other than the original target. This can, for instance,
be useful to support dragging of a dynamically created in-
termediate representation of the dragged element rather than
the original target on which the ‘touchDown’ event occurred.
The same mechanism can also be used for controlling multi-
capture and automatically releasing event capture after a cer-
tain timeout, i.e. if no further updates on touch data have been
received. This is necessary for cases where an active touch
leaves the browser window and hence does not fire the ex-
pected ‘touchUp’ event.

Attachable Behaviours
As mentioned earlier, our framework provides default imple-
mentations for basic interactions with touch-enabled web in-
terface elements, such as drag-n-drop, zoom and rotate ac-
tions. The underlying gestures, i.e. moving two fingers apart/-
toward each other for enlarging/shrinking elements, and using
one finger to pivot around another or moving two fingers in
opposing directions for rotation, are thereby detected and in-
terpreted based on native support, as in the case of Safari,
or based on the touch history, e.g. for Firefox. The default
handlers provided by jQMultiTouch therefore enable the ba-
sic set of interactions supported in many multi-touch applica-
tions [5, 22, 7]. However, to provide developers with a richer
set of features, their behaviour is also customisable through a
number of parameters, e.g. to limit the scope for drag-n-drop
operations to only certain areas or special components of the
web interface, or the scale factors for zoomable elements and
the degrees and steps by which elements can be rotated (Fig-
ure 2). Finally, jQMultiTouch also allows for intercepting the
chain of events through various before/during/after callback
handlers, or even completely replacing the default behaviour
with custom implementations.

One of the advantages of having attachable behaviours simi-
lar to jQuery is that they can be defined without restricting the
range of web interface components that they apply to. This al-
lows developers to reuse behaviours, bundle them with new,
maybe application-specific components and share them be-
tween different interfaces and applications. We will show two
examples later where we developed two reusable multi-touch
widgets based on this concept.

Legacy Support and Extension Mechanisms
– integation with 1$ gesture recogniser [24] and extension for
stroke-based multi-touch gestures

– jQMultiTouch can automatically extend existing applica-
tions with support for multi-touch

5

(b) Simple gesture handler

Figure 5: Illustration of touch history for a swipe left gesture on element and a possible gesture handler.

script animations.9 In jQMultiTouch, we apply this concept to
define simple gesture templates programmatically using rel-
ative values for variables to be tracked and compared. The
match method of the touch history therefore takes a ges-
ture template as an argument and returns true if it matches
against the touch history. In the example, we define two sim-
ple templates that look for touch changes of the horizontal po-
sition. The evaluation then first computes the delta between
the first and the last touchMove events within the last 100
milliseconds (indicated by the 1..100 range expression). This
delta is then compared to the provided value, i.e. swipe left
is then recognised if the x position in the touch data has de-
creased by at least 100 pixels, and swipe right if the delta for
x is greater than 100.

Note that the gesture callback handler can be used for regis-
tering additional gestures, potentially giving priorities to cer-
tain gestures as well as resolving conflicts between them, and
to execute corresponding actions. For more complex ges-
tures, the match method of the touch history can also take
an array of gesture templates and will then return true only
if they all match the given criteria. Distinct or partly over-
lapping periods defined for the time variable in templates
can then be used to define composed or sequential gestures
and to increase sensitivity of gesture recognition. In addi-
tion, the templates used for gestures can also be shared be-
tween different callback handlers by using global variables
instead. Rather than relying on comprehensive gesture recog-
nition frameworks, such as iGesture [22] or the 1$ gesture
recogniser [23] for more complex stroke-based gestures, this
provides a simple way of detecting basic online gestures as
they are executed on one or multiple touch elements, such
as pinch-to-zoom, panning and tilting which are typical for
multi-touch interaction [11, 24].

History Manipulation
Finally, the touch history provides several methods for ma-
nipulating the touch history. For example, overriding the tar-
get of a touch event provides a basic mechanism for dele-
gating touch events so that the capture can be transferred to
elements other than the original target. This can, for instance,

9http://api.jquery.com/animate

be useful to support dragging of a dynamically created in-
termediate representation of the dragged element rather than
the original target on which the touchDown event occurred.
The same mechanism can also be used for controlling multi-
capture and automatically releasing event capture after a cer-
tain timeout, i.e. if no further updates on touch data have been
received. This is necessary for cases where an active touch
leaves the browser window and hence does not fire the ex-
pected touchUp event.

Attachable Behaviours
As mentioned earlier, our framework provides default imple-
mentations for basic interactions with touch-enabled web in-
terface elements, such as drag-n-drop, zoom and rotate ac-
tions. The underlying gestures, i.e. moving two fingers apart/
toward each other for enlarging/shrinking elements, and us-
ing one finger to pivot around another or moving two fingers
in opposing directions for rotation, are thereby detected and
interpreted either based on native support, as in the case of
Safari, or using features of the touch history component to
compare the distance and angle between consecutive touch
events, e.g. in Firefox. The default handlers provided by jQ-
MultiTouch therefore enable the basic set of interactions sup-
ported in many multi-touch applications [14, 20]. However,
to provide developers with a richer set of features, their be-
haviour is also customisable through a number of parameters
as illustrated in Figure 2. For example, it is possible to limit
the scope for drag-n-drop operations to only certain areas or
special components of the web interface, as well as the scale
factors for zoomable elements and the degrees and steps by
which elements can be rotated. Finally, jQMultiTouch also
allows for intercepting the chain of events through various
before/during/after callback handlers, or even completely re-
placing the default behaviour with custom implementations.

One of the advantages of having attachable behaviours sim-
ilar to jQuery is that they can be associated with any inter-
face component. This allows developers to reuse custom be-
haviours, bundle them with new, maybe application-specific
components and share them between different applications.

Legacy Support and Extension Mechanisms
Touch input shares some commonalities with mouse input
since both trigger a series of down/move/up events with point

coordinates of where the input occurred. In all modern web
browsers, single touch input is per default mapped to mouse
events with the benefit that traditional implementations re-
main operational also on touch devices. On the other hand, si-
multaneous touches are usually not translated to mouse events
and can therefore not be processed by traditional event han-
dlers. This raises two major problems for application de-
velopers. First, the fact that single touches also fire mouse
events is not always convenient, especially when mouse in-
put should be treated differently from touch. Second, even
the most advanced implementations for interacting with web
interface elements offered by the jQuery UI framework10 will
not work properly with multiple objects at the same time even
if the respective event handling methods are linked to touch
events. The reason for this is that current implementations
typically rely on the fact that there is normally only one vari-
able to track for the mouse, i.e. the position of the mouse
cursor. Hence, often a single global variable is used to store
the current position, which would then be overridden with ev-
ery other touch event being processed. To prevent such con-
flicts, it is important that touch-related data is cleanly associ-
ated with the target it concerns, but this requires fundamental
changes in the code of most existing solutions.

jQMultiTouch essentially provides two solutions to this prob-
lem. First, the attachable behaviour mechanism can be used
to override existing implementations. For example, jQMulti-
Touch’s draggable and scalable behaviours could be
used to override similar draggable and resizable be-
haviours of the standard jQuery UI framework. This provides
a simple way of automatically extending existing applications
with support for multi-touch and could also provide the basis
for turning single-user web interfaces into multi-user appli-
cations. Second, building on jQMultiTouch’s touchDown,
touchMove and touchUp events in addition to traditional
mouse handlers provides a way of supporting advanced multi-
touch features as well as maintaining legacy support. jQ-
MultiTouch’s ability to control default browser behaviour can
then be used to disable default browser behaviour so that touch
events will not automatically fire mouse events.

Finally, the basic support for gesture recognition based on
the touch history could be easily extended by registering new
match predicates and aggregate functions. It is also possible
to combine jQMultiTouch with existing gesture recognition
libraries. To this end, jQMultiTouch provides a method for
converting the data stored in the touch history to a format
supported by the recogniser and vice-versa. We have used
this technique to integrate jQMultiTouch with the lightweight
JavaScript implementation of the popular 1$ unistroke recog-
niser [23]11.

IMPLEMENTATION
jQMultiTouch is implemented as an extension of jQuery. The
implementation consists of three main components: a class
touchHistory for history keeping, evaluation and manip-
ulation, the touchable behaviour for elements to be asso-
ciated with basic multi-touch interactions, as well as a default

10http://www.jqueryui.com
11http://dev.globis.ethz.ch/jqmultitouch/dollar.html

gesture callback handler. jQMultiTouch has been tested
and is compatible with WebKit-based browsers such as Sa-
fari on iPhone/iPad, the Android browser and Firefox on Win-
dows 7 touch PCs.

The touch history relies on basic JavaScript array operations
for maintaining a history of events. The touch history pro-
totype class provides two methods, start and stop, for
segmenting the touch history using match predicates. Each
segment can then be further constrained and evaluated using
the filter and match methods shown in Figure 4. Be-
cause each of these functions returns a new touch history ob-
ject similar to the way it is done in jQuery, it is possible to
specify multiple different processing steps in sequence.

As already mentioned, elements marked as touchable can
be configured with a number of options for touch event han-
dling, such as custom callback handlers as well as default
dragging, scaling and rotation behaviours. Each element will
be associated with a CSS marker class ui-state-touch-
able, which can also be used for formatting and styling, and
bind to the default gesture event handler with cross-browser
compatible implementations of the standard behaviours.

The default gesture handler processes a browser-specific touch
event e and tries to map the type of the event to the uniform
touch events touchDown, touchMove and touchUp, or
exits if the event cannot be matched by our implementation.
For every changed touch, it updates the data or creates a new
touch object in the case of a touchDown event. In the next
step, the touch event will be cached and associated with a
timeStamp. The uniform touchEvent object created in
this way will then be passed on to associated touch event han-
dlers of the target elements together with a history of the ac-
tive touch. The handler also triggers an event for custom ges-
tures, which is instead given a touch history related to the cur-
rent target rather than only the touch that triggered the event.
This excerpt of the history can therefore be used to recog-
nise gesture-based interactions that involved multiple active
touches. Each new touch event is appended to the touch his-
tory, the size of which is constrained by a configurable max-
imum size. The touch will remain active until a touchUp
event is received.

APPLICATIONS
We have used jQMultiTouch for the development of a num-
ber of applications as part of our research as well as in teach-
ing and student projects. In this section, we present selected
applications based on our framework. The first is FBTouch,
an extension of the Facebook picture tagging interface with
adaptations for touch and multi-touch. The second is TFlickr,
an adaptation of Flickr’s picture editing application with more
advanced multi-touch handlers compared to FBTouch. The
first application was created by the first author and lead devel-
oper of the framework to evaluate the feature support, while
the second was created in a two-months internship project of
a Bachelor student to test the ease-of-use for new developers.
Our preliminary evaluation therefore aims to demonstrate the
flexibility and potential of the framework as well as providing
first insights concerning usability.

Figure 6: One of the multi-touch versions we have designed
and evaluated for a simple picture tagging application similar
to Facebook, here using a two-point tagging interaction.

(a) Landscape mode using the
two-point tagging interaction

(b) Portrait mode using drag-
n-drop interactions instead

Figure 7: Another FBTouch prototype for the iPad using dif-
ferent multi-touch interfaces according to device orientation.

FBTouch
As shown in Figure 6, FBTouch provides a multi-touch web
interface for tagging people in pictures. The two main com-
ponents of the FBTouch application are the picture viewing
control and the list of selectable tags. The design is based on
the picture tagging application known from Facebook, but has
been extended to experiment with two new multi-touch inter-
faces. Both interfaces enable multi-touch gestures not avail-
able in the original Facebook interface, i.e. swipe right or left
to navigate to the previous or next picture, spread to overlay
a larger version of the picture and pinch to hide the overlay
again. The first interface shown in Figure 6 uses a two-point
tagging interaction that requires two hands with one finger
touching the picture and the other a name in the list. The
second version of the interface uses a drag-n-drop interaction
that requires dragging a name from the list and dropping it on
a person shown in the picture.

Interestingly, Windows 7 on the TouchSmart with which the
interfaces were developed and tested, did not allow for simul-
taneously touching the picture and interacting with Windows
standard controls such as the list control used for the name
tags. We therefore enhanced the scrolling mechanism in the
list of names to support scrolling when users touch the pic-
ture at the same time and to prevent accidental tagging/untag-
ging when scrolling occurred prior to the interaction. Not to
remove names from the list via drag-n-drop in the second in-
terface, we built on the touch delegation features of jQMulti-
Touch to drag a thumbnail of the person’s photo as an inter-

(a) Rotate interaction (b) Crop interaction

Figure 8: The Flickr interface recreated using features of jQ-
MultiTouch for common picture editing tasks such as rotate
and crop using multi-touch interactions.

mediate representation of the original touch target. We also
exploited multiple touch event captures so that simultaneous
dragging of two or more photo tags is generally possible us-
ing multi-finger/multi-hand interaction. To support this, we
switched to a horizontal layout to instead place the list below
the picture. Also here the default scrolling mechanism was
adapted for horizontal scrolling not to interfere with active
dragging operations. In another version we developed for the
iPad, we make use of both layouts as we switch between the
interfaces when the device is rotated (Figure 7).

TFlickr
Like FBTouch for Facebook, TFlickr is a multi-touch version
of Flickr’s interface for common picture editing tasks. As
mentioned before, the project was carried out in an intern-
ship which consisted of three parts. First, the student was
asked to explore various adaptations and new multi-touch in-
teractions as possible extensions of the original application.
Second, since this project built on an earlier version of jQ-
MultiTouch, the task was to overcome current limitations by
making small adjustments to the implementation in order to
meet the requirements of the new application. Third, the im-
plementation of several of the new prototype interfaces was
simplified by building on the advanced framework support.
The final TFlickr application was then composed of the most
promising prototypes.

In the first phase, the student created multiple versions of
the interface, e.g. for rotate and crop picture editing tasks
as shown in Figure 8. The framework support was already
considered fairly comprehensive at this stage. However, the
project still identified the need for more callbacks, e.g. to pro-
vide entry and exit points for extending the rotate function
with step-wise behaviour and allowing for more precise se-
lection of the crop area. In addition, a mechanism for tem-
porarily overriding default behaviours and to disable/enable
them as required was considered necessary as well as addi-
tional parameters for configuring the new features and re-
quired thresholds. These requirements led to the latest ver-
sion of jQMultiTouch reported in this paper with the support
for customisable default behaviours mentioned earlier.

RAPID PROTOTYPING WITH JQMULTITOUCH
To further evaluate the framework and its support for multi-
ple different devices, we created an assignment as part of an
HCI class designed for Bachelor computer science students.

swipe left swipe right swipe right
s
w

ip
e

 d
o

w
n

swipe left swipe left swipe right

s
w

ip
e

 u
p

tw
o

-f
in

g
e

r
s
w

ip
e

tw
o

-f
in

g
e

r
s
w

ip
e

tw
o

-f
in

g
e

r
s
w

ip
e

Figure 9: CNN example application implementing several
gestures for navigating between screens.

The assignment was divided into two parts and ran over three
weeks. First, students were asked to think of an application
that could potentially benefit from multi-touch interaction and
to first create story boards and paper prototypes before start-
ing with the implementation. In the second part, students
were given an introduction to jQMultiTouch and its main fea-
tures using code examples and were shown how they could
use their own devices for development. Since we wanted
to minimise the coding effort and given that not all students
had a lot of experience with jQuery, they were encouraged to
build on the following simple example application as a start-
ing point for their own solutions.

The CNN application shown in Figure 9 consists of a set of
five screens with simple gesture-based interactions for nav-
igating between screens (using swipe left/right), setting the
news site edition (swipe down on the homescreen) and going
to the front page from all other screens (via two-finger swipe).
To demonstrate some of the other features of jQMultiTouch,
the application automatically adapts to landscape mode when
the device is rotated and adjusts the content to fit different
screen dimensions and resolutions. Most importantly, the
implementation is based on a very lightweight skeleton that
makes heavy use of images rather than complex HTML and
CSS. We found that this would require less programming skill
and, while still using many features of jQMultiTouch, would
focus the students’ attention on the rapid prototyping of in-
teractions and multi-touch behaviours rather than other im-
plementation details.

Finally, to further guide the design process, we encourage stu-
dents to use the following method which we found useful for
creating the FBTouch and TFlickr prototypes.

1. Basic touch enhancements

2. Extension of interaction model towards multi-touch

3. Alternative designs to meet user preferences and skills

4. Optional adaptations to meet special device characteristics

While the assignment was not mandatory and required to com-
plete the course, it still attracted the interest of 8 groups with a
total of 24 of around 50 students registered in the course. The
most popular devices included the iPhone and Android-based
phones HTC Desire, Sony XPERIA and Samsung Galaxy SII.

(a) BBC (b) eBay

(c) Craigslist (d) VIS Gallery

Figure 10: Student solutions based on the CNN application
that range from simple modifications for the BBC web site,
over experimental interfaces for eBay to more complex adap-
tations of existing web sites for multi-touch.

Students reported no major issues and most were able to test
and build their solutions using their own touch devices. We
show a selection of the submitted assignments in Figure 10.
The first shown in Figure 10a is a variant of the example ap-
plication which was extended for the BBC web site using sim-
ple gestures for flipping through different articles and brows-
ing categories within the same screen rather than navigating
between different pages. The second application shown in
Figure 10b was created from scratch and not based on the ex-
ample code we provided. It is not a complete implementation
of the anticipated interface, but the general idea was to pro-
vide a multi-touch interface for bidding on auction platforms
such as eBay by using multiple fingers to select and sliders to
adjust the price in steps of 10, 100 or 1000 Francs. The third
application is a more complete adaptation of the Craigslist
web site for mobile touch devices (Figure 10c). Users are pro-
vided with a number of gestures to ease navigation between
different categories and narrowing down the search results.
The last application is in implementation more similar to the
example we provided, but creates a whole new experience
when translating the concepts to a photo gallery with multi-
touch support as an adaptation of an existing student union
web site (Figure 10d). In addition to flick left/right gestures
for browsing through the pictures, users can also swipe down
on a picture to download it to their device. The application
also makes use of the layout orientation features provided by
jQMultiTouch as the photo gallery shows more or less pic-
tures in horizontal direction according to device orientation.

In general, the assignment was well received by students and
led to a number of simple, yet interesting, solutions. The in-
formal feedback concerning jQMultiTouch was positive and
gives reason to believe that the framework is both of practi-
cal and research value. One student explained: “I found the

framework fairly easy to work with, but our group did not
apply it in very much depth. Conceptually though, I found
the framework easy to understand, and it seems capable of
supporting projects of all different complexities.”

DISCUSSION AND RELATED WORK
We have demonstrated that jQMultiTouch can cater for a wide
range of applications and enable the rapid prototyping of multi-
device/multi-touch interfaces. We have promoted a web-based
approach to designing multi-touch applications that can run
on different types of devices. Many of our examples, how-
ever, relate to mobile application development and therefore
add to the ongoing debate on web vs. native implementa-
tions [3]. Proponents of the first argue for reduced imple-
mentation and maintenance cost, while advocates of the lat-
ter see benefits in terms of performance and interface design.
One of the main benefits of jQMultiTouch is that developers
can build on the web programming stack that they may al-
ready be familiar with and therefore only have to learn one
method of specifying multi-touch and gesture-based interac-
tions that is compatible with many different devices. While
our specific focus with jQMultiTouch leaves out the widget
support for emulating the look-and-feel of native mobile ap-
plications, it could still provide a complete development en-
vironment when integrated with other existing jQuery-based
frameworks such as jQTouch. Moreover, while several works
have contributed the design of a general multi-touch archi-
tecture, e.g. [6, 13], our solution seems more lightweight and
direct since we leverage native browser support as much as
possible. The current lack of support for tangible widgets in
our framework could be mitigated by other techniques similar
to CapWidgets [15].

From a more general perspective and given the examples in
the paper, jQMultiTouch also provides new ways of adapt-
ing existing interfaces for touch and multi-touch. The adap-
tation of web sites to different devices is a popular topic in
web engineering, but research has often aimed at fully au-
tomatic methods, e.g. for retargeting existing web interfaces
to mobile phones [4, 10]. Other research has mainly looked
at different models of user interface abstraction, e.g. CAME-
LEON [1], and model-driven approaches for generating in-
terfaces adapted to different user, platform and environment
contexts [2, 8, 18]. In particular, the authoring of adaptive and
multi-modal user interfaces has been the subject of extensive
research. However, the focus has tended to be on logical de-
scriptions of user interfaces and the design of domain-specific
languages rather than leveraging existing solutions [17]. Of
the various existing approaches only MARIA [19] has in-
cluded support for the new generation of touch devices, but
this is limited to a mapping of concepts at the concrete user
interface level. A critical goal of our work has therefore
been to find more lightweight solutions that, in particular,
build on only native web technologies, i.e. HTML, CSS and
JavaScript, and integrate well with existing web scripting toolk-
its such as jQuery.

Our discussion addresses three remaining important topics
with respect to the proposed framework: development effort,
performance of applications and extension mechanisms.

Design Simplicity
It is difficult to carry out direct comparisons between imple-
mentations based on jQMultiTouch and other existing multi-
touch frameworks due to fundamental differences. However,
especially when compared to browser-specific code, the ab-
stractions provided by jQMultiTouch lead to cleaner imple-
mentations and therefore add to the design simplicity for de-
velopers. In particular, the history concept with its query and
evaluation mechanisms as well as the lookup table for ac-
tive touches require less helper variables in event handlers
because custom state can be attached to the touches or the
history object and therefore be tracked more easily between
callbacks. While this may not be so obvious from the simple
code examples given in the paper, this has been recognised
as a major issue [14] and can become particularly complex in
larger applications.

Execution Performance
As already mentioned, jQMultiTouch has been used on many
different mobile devices including iPhone 3G/4G, iPod 1G/2G,
iPad 1G/2G, EeePad transformer tablet/notebook, as well as
the TouchSmart all-in-one desktop computer. While it is dif-
ficult to cross-test all possible configurations and provide re-
liable data due to considerable differences between many of
these devices and available browser implementations, we did
not see major performance issues in terms of the multi-touch
interaction on any of the devices. The simple picture view-
ing application from the first example executed on a mod-
ern smartphone performs almost as well as on the full-blown
desktop PC showing very high refresh rates, but starts to drop
in frequency the larger the images are scaled. However, this
is a limitation of current browser support for CSS3 2D Trans-
forms and not an issue related to our framework.

Scalability and Portability
While we can therefore argue that the current implementa-
tion of jQMultiTouch has the potential to scale across many
different devices ranging from mobile phones to large interac-
tive surfaces, we have to critically note that this may change
if more browser vendors start to build on proprietary methods
for touch event handling rather than aiming at standards. We
therefore welcome recent efforts to create a W3C recommen-
dation for common touch event models12. In the meantime,
however, jQMultiTouch can provide a viable alternative and
allow developers to build applications for a range of devices,
as well as contributing an advanced framework for handling
touch and other input data in a consistent way.

jQMultiTouch is available for download from the project web
site13. We hope this encourages interested developers to ex-
periment with existing framework support in their own appli-
cations and contribute refinements or new extensions building
on the different mechanisms we have built into the framework
for exactly this purpose.

CONCLUSION
In this paper, we presented jQMultiTouch, a lightweight frame-
work for the rapid prototyping and development of multi-
touch web interfaces that can run on many different devices.

12http://www.w3.org/TR/touch-events
13http://dev.globis.ethz.ch/jqmultitouch

We have shown how this framework was used to improve the
interaction of existing applications on touch devices as well as
for providing application-specific support for gesture-based
modalities and multi-touch interaction techniques that go be-
yond basic zooming and panning actions.

In our ongoing research, we are building on the multi-touch
framework in several projects to develop new methods for
web interface adaptation as well as exploring novel touch
and gesture-based interaction techniques especially useful in
a web context. In addition, we believe that the extensible
query-based input processing techniques presented in this pa-
per can cater for other kinds of continuous input data, e.g. for
handling 3D skeletal tracking data of Microsoft Kinect.

ACKNOWLEDGMENTS
We would like to thank Sai Swaminathan and Max Speicher
for their help with the implementation of jQMultiTouch and
some of the example applications. Special thanks go to the
HCI class 2011 at ETH Zurich who also contributed several
example applications. This work was supported by the SNF
under research grant 200021 121847.

REFERENCES
1. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,

Bouillon, L., and Vanderdonckt, J. A Unifying
Reference Framework for Multi- Target User Interfaces.
IWC 15 (2003).

2. Ceri, S., Daniel, F., Matera, M., and Facca, F. M.
Model-driven Development of Context-Aware Web
Applications. TOIT 7, 1 (2007).

3. Charland, A., and LeRoux, B. Mobile Application
Development: Web vs. Native. CACM 54, 5 (2011).

4. Chen, Y., Ma, W., and Zhang, H. Detecting Web Page
Structure for Adaptive Viewing on Small Form Factor
Devices. In Proc. WWW (2003).

5. Dietz, P. H., and Leigh, D. DiamondTouch: A
Multi-User Touch Technology. In Proc. UIST (2001).

6. Echtler, F., and Klinker, G. A Multitouch Software
Architecture. In Proc. NordiCHI (2008).

7. Esenther, A., and Wittenburg, K. Multi-User
Multi-Touch Games on DiamondTouch with the
DTFlash Toolkit. In Proc. INTETAIN (2005).

8. Frăsincar, F., Houben, G.-J., and Barna, P. Hypermedia
presentation generation in Hera. IS 35, 1 (2010).

9. Hansen, T. E., Hourcade, J. P., Virbel, M., Patali, S., and
Serra, T. PyMT: A Post-WIMP Multi-Touch User
Interface Toolkit. In Proc. ITS (2009).

10. Hattori, G., Hoashi, K., Matsumoto, K., and Sugaya, F.
Robust Web Page Segmentation for Mobile Terminal
Using Content-Distances and Page Layout Information.
In Proc. WWW (2007).

11. Hinrichs, U., and Carpendale, S. Gestures in the Wild:
Studying Multi-Touch Gesture Sequences on Interactive
Tabletop Exhibits. In Proc. CHI (2011).

12. Kaltenbrunner, M., Bovermann, T., Bencina, R., and
Costanza, E. TUIO: A Protocol for Table-Top Tangible
User Interfaces. In Proc. GW (2005).

13. Kammer, D., Keck, M., Freitag, G., and Wacker, M.
Taxonomy and Overview of Multi-touch Frameworks:
Architecture, Scope and Features. In Proc. EICS,
Workshop on Engineering Patterns for Multi-Touch
Interfaces (2010).

14. Kin, K., Hartmann, B., DeRose, T., and Agrawala, M.
Proton: Multitouch Gestures as Regular Expressions. In
Proc. CHI (to appear).

15. Kratz, S. G., Westermann, T., Rohs, M., and Essl, G.
CapWidgets: Tangible Widgets versus Multi-Touch
Controls on Mobile Devices. In Proc. CHI Extended
Abstracts (2011).

16. Laufs, U., Ruff, C., and Zibuschka, J. MT4j - A
Cross-platform Multi-touch Development Framework.
In Proc. EICS, Workshop on Engineering Patterns for
Multi-Touch Interfaces (2010).

17. Nebeling, M., Grossniklaus, M., Leone, S., and Norrie,
M. C. XCML: Providing Context-Aware Language
Extensions for the Specification of Multi-Channel Web
Applications. WWW 15, 4 (2012).

18. Niederhausen, M., van der Sluijs, K., Hidders, J.,
Leonardi, E., Houben, G.-J., and Meißner, K.
Harnessing the Power of Semantics-Based,
Aspect-Oriented Adaptation for AMACONT. In Proc.
ICWE (2009).

19. Paternò, F., Santoro, C., and Spano, L. MARIA: A
Universal, Declarative, Multiple Abstraction-Level
Language for Service-Oriented Applications in
Ubiquitous Environments. TOCHI 16, 4 (2009).

20. Scholliers, C., Hoste, L., Signer, B., and Meuter, W. D.
Midas: A Declarative Multi-Touch Interaction
Framework. In Proc. TEI (2011).

21. Shen, C., Vernier, F., Forlines, C., and Ringel, M.
DiamondSpin: an extensible toolkit for around-the-table
interaction. In Proc. CHI (2004).

22. Signer, B., Kurmann, U., and Norrie, M. C. iGesture: A
General Gesture Recognition Framework. In Proc.
ICDAR (2007).

23. Wobbrock, J. O., Wilson, A. D., and Li, Y. Gestures
without Libraries, Toolkits or Training: A $1 Recognizer
for User Interface Prototypes. In Proc. UIST (2007).

24. Wu, M., and Balakrishnan, R. Multi-Finger and Whole
Hand Gestural Interaction Techniques for Multi-User
Tabletop Displays. In Proc. UIST (2003).

	INTRODUCTION
	JQMULTITOUCH
	Core Features
	Touch History Concept
	History Keeping
	History Evaluation
	History Manipulation

	Attachable Behaviours
	Legacy Support and Extension Mechanisms

	IMPLEMENTATION
	APPLICATIONS
	FBTouch
	TFlickr

	RAPID PROTOTYPING WITH JQMULTITOUCH
	DISCUSSION AND RELATED WORK
	Design Simplicity
	Execution Performance
	Scalability and Portability

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

