
MultiMasher: Providing Architectural Support
and Visual Tools for Multi-Device Mashups

Maria Husmann, Michael Nebeling, Stefano Pongelli, and Moira C. Norrie

Department of Computer Science, ETH Zurich CH-8092 Zurich, Switzerland,
{husmann|nebeling|norrie}@inf.ethz.ch

Abstract. The vast majority of web applications still assume a single
user on a single device and provide fairly limited means for interaction
across multiple devices. In particular, developing applications for multi-
device environments is a challenging task for which there is little tool
support. We present the architecture and tools of MultiMasher, a sys-
tem for the development of multi-device web applications based on the
reuse of existing web sites created for single device usage. Web sites
and devices can be mashed up and accessed by multiple users simul-
taneously, with our tools ensuring a consistent state across all devices.
MultiMasher supports the composition of arbitrary elements from any
web site, inter-widget communication across devices, and awareness of
connected devices. We present both conceptual and technical evaluations
of MultiMasher including a study on 50 popular web sites demonstrating
high compatibility in terms of browsing, distribution and linking of web
site components.

Keywords: web site mashups, distributed user interfaces, multi-device
mashups

1 Introduction

Despite the widespread use of diverse computing devices in our daily lives, the
overwhelming majority of applications are still built to be used on one device
at a time. Creating applications that integrate multiple different devices is chal-
lenging and there is little tool support to cater for multi-device environments.

While there has been a great deal of research in the area of distributed user
interfaces (DUI), most of it is either focused on building new applications from
scratch [1, 2] or on distributing a single, existing application across multiple
devices [3]. The potential of reusing and mixing multiple applications has not
been a topic in the DUI community, although the benefits have been recognised
in the mashup research community where a range of frameworks and tools for
integrating existing components from different web sites into a new application
have been proposed [4, 5]. However, the resulting applications are usually still
developed for a single device.

In [6], we described a first prototype of MultiMasher with an initial set of
visual tools designed for creating mashups and distributing them across multiple

connected devices. In this paper, we expand on the concepts of such multi-device
mashups and present an updated and extended version of MultiMasher built on
a new architecture. In particular, we make the following contributions.

– We introduce and illustrate concepts for multi-device mashups in Sect. 3.
– The updated MultiMasher client provides new visual tools which are de-

scribed in Sect. 4. It runs in any modern browser and does not require
browser extensions or plugins. It supports the selection of elements from ar-
bitrary web sites and the composition of multi-device mashups in a direct
manipulation interface. The selected elements can be arranged in mashups
through drag-and-drop operations and new interactions may be defined be-
tween them. MultiMasher provides an overview of all connected devices and
elements can also be moved easily between devices via drag-and-drop.

– A new architecture is presented in Sect. 5 which eliminates several limitations
of the first prototype and enables additional functionalities.

In addition, we present both conceptual and technical evaluations of Multi-
Masher in Sect. 6. Conceptually, we have assessed MultiMasher along the dimen-
sions of the logical framework for multi-device user interfaces presented in [7].
We have also taken into account further dimensions covering aspects specific to
multi-device mashups, such as the type of components used or inter-component
communication. For the technical evaluation, we tested MultiMasher on 50 pop-
ular web sites and, despite some limitations mostly affecting highly dynamic,
JavaScript-heavy web sites, achieved encouraging results regarding its compati-
bility and support for browsing, distribution, and linking of web site elements.

2 Background

In [6], we define a multi-device mashup as “a web application that reuses con-
tent, presentation, and functionality provided by other web pages and that is
distributed among multiple cooperating devices.” To focus on the main concepts
of a multi-device mashup, we introduce the following simple scenario (Fig. 1),
which will be used as the running example in the paper.

Two friends, Bill and Ted, are on a holiday and want to plan a bike trip
to several places nearby. While they each have their smartphone, they
also want to make use of the larger, digital TV in their accommodation.
As Wikipedia provides good background information, but does not give
a good visual impression of a place, they want to simultaneously view
Google Image Search results for each place they look up. Bill suggests that
they could use MultiMasher to quickly mash up articles from Wikipedia
and images from Google for the same place on the large screen, while
they could each use their smartphone to enter new locations. However,
they want to use a single input field which should update both the article
and the images on the large screen rather than searching separately on
each page. After collaboratively exploring a couple of places using their

smartphones while sitting on the sofa, they later decide to move to Ted’s
laptop so that they can meet up with another friend to discuss their plans.
Using MultiMasher, the mashup they created across the smartphones and
the large screen can easily be migrated while preserving the current state.

Fig. 1. A multi-device mashup composed of two web sites and three devices.

This simple scenario illustrates the three areas of related work that our re-
search builds on: mashups, DUIs and collaborative browsing.

The mashup in our scenario is spread across multiple devices and this dis-
tribution introduces a set of challenges, such as the migration of interface parts
across devices, changing the distribution at run-time, and adaptation to de-
vice characteristics. Such problems have been addressed by DUI researchers and
a number of frameworks have been built. Similar to our goals, MarcoFlow [8]
aims at the composition of distributed mashup-like applications. Due to the
high level of complexity, this approach is targeted at skilled developers and is
not suitable for non-technical end-users. Other frameworks for DUI development
follow a model-based approach, e.g. [9, 10]. A framework for the development of
distributed interactive applications is introduced in [1]. It is divided into two
components, a client side and engine side. Instead of relying on a fixed server,
the user can flexibly configure any of the devices as the engine coordinating the
distribution. The distributions can be updated at runtime, for example triggered
by user interaction. Changing the distribution at runtime requires that interface
components migrate from one device to another while preserving their state.
This was the focus of their previous work [3], which allows the migration of ex-
isting web applications across devices. The system uses a proxy-based approach
and uses DOM serialisation to propagate the state from one device to the other.
Even though the system supports multiple users, its focus is on sequential in-
teraction. It does not support the simultaneous interaction of multiple users or
devices with a web application.

Another aspect in the scenario was the use of one input field to trigger a
search in both web sites. The exchange of data and events between widgets is
referred to as inter-widget communication (IWC). It is of interest to both the
mashup and the DUI community, as it can be used to connect two widgets from
different sources, but also to connect widgets across multiple devices. A recent

example from the DUI community is DireWolf [11], a framework for web appli-
cations based on pre-built widgets. It supports the distribution and migration of
widgets at run-time. DireWolf implements both local IWC, as well as IWC across
devices. In contrast to our work, a widget can only be present on one device at a
time, while we support the replication of a component to multiple devices. In the
mashup area, [12] presents a semi-automatic approach targeted at non-technical
end-users to extend widgets with IWC capabilities through programming by
demonstration. However, this is preliminary work that is still limited to only a
few input scenarios. In the current version of MultiMasher, users have to explic-
itly link widgets from different sources, but their semi-automatic approach could
be integrated with ours as they are both based on GUI-level events.

Besides IWC, component extraction is a topic that has been addressed by the
mashup research community. In our scenario, components are extracted from ex-
isting web sites—Wikipedia and Google Image Search—and connected, so that
communication between them is possible. Semi-automatic component extrac-
tion from existing web sites is, for example, supported by Firecrow [13]. The
developer demonstrates to the tool the desired behaviour of the component by
performing a series of interactions. The system tries to extract the necessary
HTML, JavaScript, CSS and resources. The extracted UI controls may then be
embedded into existing web sites. However, the tool does not provide support
for the linking of multiple controls and any inter-widget communication must
be implemented manually. On the other hand, mashArt [4] supports this using
the approach of universal composition which allows the creation of applications
based on the integration of data, application and UI components. The commu-
nication between the components is based on events and operations. However,
the mashArt tool itself is targeted at advanced web users and the accompanying
component library needs to be filled by professional programmers. In contrast,
Ghiani et al. [5] present an environment for mashup creation targeted at end-
users without programming knowledge. Similar to our work, mashup components
can be chosen from arbitrary web sites through direct manipulation of the GUI.
In order to connect mashup components, the system generates a list of input
and output parameters by intercepting and analysing HTTP requests. The user
may then associate input with output parameters across components.

As illustrated in the scenario, our system aims to support multiple simul-
taneous users: once web sites are distributed as components and mashed to-
gether, multiple users may interact with the same component in collaboration.
We achieve this by integrating principles of collaborative browsing [14], or co-
browsing, taking care of synchronising the browsers operated by multiple users.
The issue of providing co-browsing of dynamic, JavaScript-enabled web pages
is tackled in [15]. The presented solution works at the DOM level, can be im-
plemented in JavaScript, and requires no extensions to the browser. The paper
describes two mechanisms of JavaScript engine synchronisation. Input synchroni-
sation takes into consideration UI events alone, thus synchronisation happens be-
fore the execution of JavaScript. Output synchronisation propagates the changes
made on the DOM tree after the JavaScript execution. With MultiMasher, we

present a solution which uses similar concepts as those expressed in JavaScript
engine output synchronisation. While the authors found input synchronisation
to be better for scalability and user experience, it is not clear whether they take
into account the fact that propagation of interactions may generate multiple up-
dates to a database, for instance when submitting a form. To address this issue,
we opted for an architecture that builds on a remote control metaphor similar to
Hightlight [16], where interactions from mobile devices are executed on a proxy
browser in the server and changes sent back to the mobile clients.

3 Concepts for Multi-Device Mashups

We have developed and integrated concepts for mashups, DUI and co-browsing
that play an important role for multi-device mashups. In this section, we give an
overview of the concepts in terms of entities and operations, before explaining
how they were implemented in MultiMasher in the next sections.

Figure 2 illustrates the three main entities involved in a multi-device mashup:
components, mashups and devices: Components extracted from existing web
pages are composed into a set of inter-connected mashups which are accessed
simultaneously by multiple devices.

Mashup 2Mashup 1

Device 1 Device 2 Device 3

Page 1 Page 2 Page 3 Page 4

Fig. 2. Overview of a multi-device mashup

We define a component as a subset of web page elements, ranging from a
single HTML element, such as a form input field, to the complete body. A mashup
contains a specific set of components. All devices accessing the same mashup will
receive the same set of components. In order to obtain a different view for another
device, a mashup with a different set of components must be created. Note that
there may be an overlap between the set of components used in two mashups.
Finally, a multi-device mashup is defined as a set of mashups.

There should be no limitations to the kind of device that can access a multi-
device mashup, granted that it is equipped with a modern web browser. The

relation between user and device may be one-to-one, many-to-one or one-to-
many as, similar to our scenario, a user could use multiple devices at a time, for
example a phone and a tablet, while a larger device such as a smart TV may be
shared by multiple users.

In terms of operations, we distinguish three dimensions: mashing up, dis-
tributing and co-browsing. Mashing up relates to the operations that are also
needed in traditional, single-device mashup development. Component creation
should be supported programmatically or by direct manipulation of the web
site. Component manipulation and adaptation operations, such as moving, re-
sizing, copying or deleting, can provide a means for quickly building a visually
appealing mashup. To obtain rich interactions, inter-component communication
is required, so that interaction with one component may affect another com-
ponent. We distinguish explicit and implicit inter-component communication
(Fig. 3). Components that originate from the same web site communicate im-
plicitly. For example, if one component displays the search bar of Google and
another the list of results, entering a keyword in the search component should
update the results component. As this is the default behaviour of the original web
site, reproducing it in the mashup should not require any actions of the mashup
developer. In contrast, components originating from two different sources must
be explicitly connected if any interaction between them is required. Introducing
a third component that contains the result of a search on Wikipedia into our
example, it must be explicitly connected to the Google search component, if it
is to update upon the input of a keyword into the Google search component.

Fig. 3. Implicit and explicit inter-component communication

Distributing operations addresses the distribution of components across mashups
and devices. To provide a means for experimentation, it should be possible to
migrate components from one mashup to another (and consequently from one
device to another), while maintaining its state and configuration, such as con-
nections to other components. Inter-component communication should be trans-
parent to the location of the participating component. That is, it should not
make a difference whether two components reside in the same or in two differ-
ent mashups. Note that two components inside the same mashup could also be
accessed by multiple devices.

The co-browsing dimension covers the aspect of multiple users accessing a
multi-device mashup simultaneously. As a user interacts with a multi-device
mashup, updates to another user’s view of the mashup are likely to occur. To

avoid confusion, a mechanism for raising awareness for interactions with the
system should be employed.

4 MultiMasher

We have implemented the concepts described in the previous section in Mul-
tiMasher which provides visual tools for building and deploying multi-device
mashups. It can be loaded into any modern web browser and does not require
any extensions or plug-ins. As MultiMasher focuses on direct manipulation and
requires no programming knowledge to build a multi-device mashup, our tool
was designed to be used by technical and non-technical users alike. MultiMasher
does not explicitly distinguish between design and run-time as any changes to
a mashup immediately take effect. There are two main views in MultiMasher.
The global view provides an overview of the complete multi-device mashup and
all the mashups of which it is composed. Upon the selection of such a mashup,
the mashup view is opened where the mashup can be edited and used.

4.1 Global View

The global view shows the state of the whole multi-device mashup and allows
users to manipulate it. Initially, the user starts with an empty multi-device
mashup. Any number of mashups can be created and added to the multi-device
mashup, independent of the devices that are connected to the system. An in-
teractive preview of all mashups is shown (Fig. 4). For each mashup, all the
components it contains are colour coded. Components that originate from the
same web site have the same background colour. The border colour denotes the
set of web site elements that constitute the component. If two mashups contain
the exact same component, it will have identical body and border colours in both
previews. Components can be migrated between mashups via drag-and-drop and
they can be resized directly in the browser. MultiMasher thus supports quick
and easy experimentation and adaptation. Since all changes are immediately
executed, all connected devices are updated simultaneously. For example, mi-
grating a component from a source to a target mashup, removes the component
from the view of all devices connected to the source mashup and introduces it on
the target devices. To raise awareness, the global view lists all connected devices
and for each mashup displays a colour-coded icon for each device subscribed to
that mashup.

4.2 Mashup View

The mashup view displays a single mashup on a device. In this view, the user can
interact with the mashup in the role of the end-user, e.g. entering a search query
in our example. However, the mashup can also be edited. Components can be
created and manipulated. Initially, a freshly created mashup provides an empty
canvas. Clicking and dragging the mouse on the canvas specifies the dimensions

Fig. 4. An interactive preview of a multi-device mashup consisting of two mashups
(Mobile and Large). The small coloured squares denote the clients connected to each
mashup, two to Mobile, one to Large. The Large mashup contains two components from
two different web sites. The Mobile mashup contains one component that originates
from the same web site as the component of the left side of the Large mashup, which
is indicated by the identical background colours.

of a new component. The system then creates a new component and asks the
user to provide a source web site by either specifying a URL or choosing one
that has been used previously from a list. MultiMasher loads the full web site
inside the component boundaries. A component can be in either execution mode
or configuration mode. In execution mode, the user interacts with the source web
site of the component. In configuration mode, the user can adapt the component.
Once in configuration mode, an element selection mode and a linking mode are
available. During element selection, the user can select any element of the source
web site. Subsequently, the component will only display the selected elements
and its descendants.

As an example, in Fig. 5, only the main article of Wikipedia has been selected
for a component. In the linking mode, users can add explicit inter-component
communication. In the current version of MultiMasher, this can be done by
attaching tags to change, submit and click events of a web site element. Sub-
sequently, all elements with identical tags for the same event type will be con-
nected and an event triggered on one element will trigger the same event on
all connected elements. In our example, we can attach a search tag to both the
Wikipedia and the Google search button for the click event, so that clicking the
Wikipedia search button, also triggers the Google search button and vice versa.
In configuration mode, the user can copy a component. This can be useful if the
user wants to create another component based on the same web site or to have
an exact copy of the component in another mashup. After copying the compo-
nent in the mashup view, it can be migrated to another mashup in the global
view. Also in the mashup view, components can be freely resized and moved to
any location in the mashup.

4.3 Co-browsing Feedback

Since MultiMasher is targeted at multi-user scenarios, we added some features
for co-browsing feedback to raise awareness for the interactions happening on all
connected devices. In the global view, every connected client device is assigned

Fig. 5. Element selection mode.

a colour. Whenever that client interacts with a mashup or edits a mashup, all
other clients are notified. For example, when a client moves a component inside
a mashup, the component will be highlighted with that client’s colour while
it is being moved on all other devices. Furthermore, a notification message is
displayed at the bottom corner of MultiMasher. When a user interacts with the
web site inside a component, e.g. entering some text in an input field, the element
will again be highlighted with the corresponding colour on all devices.

5 Architecture and Implementation

Our experiments with an early MultiMasher prototype [6] have shown that there
is a need for an advanced architecture to support complex scenarios. A major
challenge in an infrastructure for multi-device mashups is maintaining a consis-
tent state across all involved devices. In our first prototype, we implemented a
solution based on JavaScript engine input synchronisation as described in Sect. 2.
DOM events originating from one device are replayed on all other devices. For
example, when a user clicks on a button on one device, the click event is inter-
cepted and sent to the server, which forwards it to all connected devices. On
the devices, the click event is triggered on the button, thus, the remote click is
replayed locally, which should result in the same state on all devices. There are
two major drawbacks with this method. First, it can result in multiple updates
to the server. For example, if a button to submit an order is clicked on one de-
vice, the same click will be repeated on all connected devices, possibly resulting
in multiple orders. This is especially problematic in mashups that include pur-
chases, e.g. in a mashup that combines eBay with a map. Second, depending on
the server, different devices may receive different content, for example, a query
may return different search results for two devices due to the search history, thus
causing the system to run out of sync.

The root of the problem stems from having to maintain a consistent global
state which is, however, fragmented and distributed across devices, each with its
own session. Since we handle arbitrary external web sites which are outside our
domain, a possible approach to this issue is to centralise the system: instead of

Fig. 6. Session synchronisation in the first prototype (left) and the current version
(right) of MultiMasher.

trying to synchronise the state of multiple sessions that are distributed among
devices, we propose to use a single session which is in turn shared across devices.
To illustrate the difference, Fig. 6 compares our first prototype to our current
approach. The former uses a server for broadcasting events to the devices, which
have different sessions with the same web site, while the latter detaches the
session from the devices moving it to the server, which becomes a proxy between
the devices and the web site.

We propose an approach similar to the remote control metaphor used in
Highlight [16]. On the server-side, a headless browser (i.e. a web browser without
a GUI) maintains the state of each web site used in the multi-device mashup.
Each source web site is loaded in a tab in the headless browser. All requests from
client devices are proxied through the MultiMasher server, instead of directly
going to the original web servers. For example, if a user clicks a button, the
client device sends the click to the server which replays the click in the headless
browser. This may lead to an update of the web site, e.g. by loading new content
via Ajax or some local JavaScript manipulation. Subsequently, the MultiMasher
server serialises the new DOM and sends it to all involved clients. To improve
performance, resource requests, for example for images, are sent to the original
web servers directly rather than being proxied.

On the client-side, each component representing part of a web site is con-
tained in an iframe. By default, components are displayed in the size that they
are received in the headless browser. This may not be suitable for small screens,
but MultiMasher supports resizing of components which may be used to adjust
the content for the devices in use. Inside the iframe, we disable the JavaScript
of the original web site in order to gain full control over the component. All
JavaScript is run in the headless browser on the server and the results are sent
back to all clients. Thus we ensure a consistent state across all devices. For the
selection of components in the client, we use a similar approach to [5]. However,
instead of the element ID, we use its path in the DOM tree, thus avoiding the

explicit need for IDs. Yet, neither approach solves the problem of evolving web
sites where both the DOM structure and element IDs may change.

We implemented MultiMasher using Node.js1 on the server-side. As a head-
less browser, PhantomJS2 is used, which runs in a separate process and commu-
nicates with Node.js via a plug-in.

6 Evaluation

In this section, we first present the results of a conceptual evaluation of Multi-
Masher along an established framework, followed by a technical evaluation based
on 50 top web sites.

6.1 Conceptual Evaluation

In a conceptual evaluation, we assessed MultiMasher along the dimensions of a
logical framework for multi-device UIs [7]. As this framework does not take into
account aspects specific to mashups, we added the following set of additional
dimensions that were derived during the process of building MultiMasher and
from related work.

Inter-Component Communication describes how distributed UI elements
can be set up to communicate with each other. This might be automatic,
if no configuration by the user is required; manual, if the connection has to
be manually established; and mixed if both cases are possible. MultiMasher
provides a mixed approach. Automatic communication is only possible for
components that originate from the same source, otherwise the communica-
tion has to be set up manually via tagging.

Synchronisation Consistency defines how complex it is to maintain synchro-
nisation across devices and web sites. In a consistent system, resynchronisa-
tion is easy to achieve; while in an inconsistent system, resynchronisation is
hard to achieve. An example of similar observations may be found in [15].
As MultiMasher stores the state of a mashup centrally on the server, a de-
vice that is out of sync simply needs to reconnect to the server in order to
synchronise.

Type of Components analyses the type of components used in the distribu-
tion. These can be widgets, i.e. small, pre-built, self-contained web applica-
tions; or, as in MultiMasher, arbitrary HTML elements.

Component Creation defines the mechanisms that can be supported for cre-
ating components. Components may be pre-built, i.e. widgets; scripted at
design-time, i.e. by developers working on the cross-device-mashup; or gen-
erated by direct-manipulation of web sites by the user as in MultiMasher.

1 http://nodejs.org
2 http://phantomjs.org

Flexibility to Changes analyses flexibility to changes in the source web sites,
e.g. because of evolving web site structure of the re-authored pages [17]. It
ranges from high if components can adapt well to the new source to low if no
adaptation is provided. In MultiMasher, an evolving web site can interrupt
inter-widget communication. If the DOM elements for a component can no
longer be found, it only affects that component. The rest of the mashup
remains stable and the user may adjust the component to any changes in
the source web page.

Multi-Device
Dimensions

MultiMasher Mashup Dimensions MultiMasher

Distribution Dynamic Inter-Comp. Comm. Mixed
Migration UI elements Sync. Consistency High
Granularity Entire UI to components

of UI elements
Type of Comp. HTML element

Trigger User Creation Direct manipulation
Sharing Moving information,

sharing by interacting
Flexibility Medium

Timing Mixed
Modalities Multi-modal
Generation Run-time
Adaptation Resizing
Architecture Client/Server

Table 1. Conceptual evaluation for multi-device UI dimensions (left) and mashup
dimensions (right)

We applied the original framework and the new dimensions to MultiMasher.
A summary of the results can be found in Table 1. Compared to the other
frameworks assessed in [7], MultiMasher is the only tool that supports multi-
modal interaction. It can in principle be used with any interaction modality that
is supported by the browser (e.g. touch). MultiMasher provides the most essential
support for UI adaptation in that components can be moved and resized to
accommodate different device characteristics. Advanced adaptation operations
similar to CrowdAdapt [18] could be added in the future. Overall, our evaluation
shows that MultiMasher can be well described in terms of the given dimensions
and addresses some of the issues listed as future work in [7] such as preservation
of state in UI migration.

6.2 Technical Evaluation

Based on the methodology used in [18], we evaluated MultiMasher in terms of
its technical compatibility with 50 top web sites, ranked according to popularity
and traffic by Alexa3. We selected the first 5 web sites from 10 categories: Arts,

3 http://www.alexa.com

Wikipedia

50 top web sites

MultiMasherMashing up Browsing

Distributing

Fig. 7. Evaluation scenario.

Browsing Page elements are loaded and displayed correctly.
Page elements behave as expected.
User interactions are handled correctly.

Distribution Page elements can be extracted and distributed as components.
Distributed elements are displayed correctly.
Distributed elements behave as expected.
Distributed elements are synchronised with the underlying web page.

Mashing up Elements of a web page can be linked with elements belonging to an-
other page.
Click, change, and submit events are correctly replayed in linked ele-
ments.

Table 2. Criteria of the technical evaluation.

Business, Games, Health, Home, News, Science, Shopping, Society, and Sports.
In order to assess MultiMasher with respect to these web sites, we developed
a simple but representative cross-device mashup scenario (Fig. 7), which can
be constructed using almost any type of web site. The scenario is composed of
two devices, each using a different mashup, and two different inter-connected
web sites. These are separated into components, which are then distributed
and tested. In particular, we differentiate three categories of components: menu,
search bar and main content. Only one of the two web sites is changed at each
iteration of the scenario, while the other is fixed. The purpose of the fixed web
site is exclusively to test the mashup capabilities (i.e. inter-page communication)
of the cross-device mashup and it should not impact the evaluation. We selected
Wikipedia, as it has proved to work very well in MultiMasher.

We assessed MultiMasher based on the criteria in Table 2 which can be
grouped into three categories: browsing, distribution and mashing up. For each
criterion, we assigned a value between 1 = poor for web sites with major issues
to 5 = excellent for full support.

Overall the evaluation shows that MultiMasher offers good compatibility
with web sites from many different domains. 43 of the 50 tested web sites (86%)
obtained an average rating of a 4 or higher. Note that the browsing criteria
have a higher priority than the other two categories. A low score in terms of
browsing implies a low compatibility with MultiMasher overall, despite possibly
higher scores in distributing and mashing up. Considering the browsing criteria
in isolation, 31 web sites (60%) scored a 4 or higher. Thus, they either had

1

1.5

2

2.5

3

3.5

4

4.5

5

Display Behaviour Interaction

Browsing

1

1.5

2

2.5

3

3.5

4

4.5

5

Extraction Display Behaviour Sync.

Distribution

1

1.5

2

2.5

3

3.5

4

4.5

5

Linking Events

Mashingkup

Fig. 8. Results of the technical evaluation (error bars showing standard deviation).

no issues at all or smaller issues affecting non-critical elements, such as ads in
separate iframes. 48 sites (96%) scored a 3 or higher, which implies that the
majority of critical elements were working as expected. MultiMasher showed
very good compaitiblity with respect to the distribution and the mashing up
categories. For the distribution criteria, 48 sites (96%) scored a 4 or higher and
17 sites were rated a 5. Similarly, for the mashing up criteria 44 sites (88%)
reached at least a 4 and 39 sites (78%) obtainted the maximum rating of a 5.

Most issues we observed during the evaluation boil down to the following
challenges:

– Heavy use of JavaScript. In order to prevent de-synchronisations and dupli-
cation of updates to the external web servers, we removed JavaScript from
the local copy of the page in the front-end. This does not affect the normal
behaviour of the page in most cases since JavaScript is run in the back-
end, however, it limits cases where dynamic operations are expected to be
available directly in the client, e.g. for drag-and-drop.

– CSS extraction. We encountered some instances where the extracted ele-
ment was not positioned correctly inside the component or where the page
background was shown out of place.

– DOM evolution. Certain web sites evolve their DOM, for instance by ran-
domly changing form IDs to prevent spam. However, DOM evolution in-
terferes with the path-based approach that MultiMasher uses to identify
elements. DOM re-matching techniques, such as the ones introduced in Page-
Tailor [17], could be used to alleviate this issue.

7 Conclusion

We have presented concepts for multi-device mashups and an implementation
in MultiMasher based on an architecture with centralised state in a headless
browser. Even though mashups and DUI could be viewed as two orthogonal con-
cepts, we believe that the development of multi-device mashups benefits from
an integrated solution, especially when considering an iterative approach to de-
sign and development. Future work could explore the potential of MultiMasher

to support multi-device development ranging from prototyping to testing and
debugging of complex applications. While detailed user evaluations of Multi-
Masher remain as future work, we have paid particular attention to the design
of its visual interface with the goal of allowing the quick and easy creation of
user interfaces involving multiple devices.

References

1. Frosini, L., Manca, M., Paternò, F.: A Framework for the Development of Dis-
tributed Interactive Applications. In: Proc. EICS. (2013) 249–254

2. Melchior, J., Grolaux, D., Vanderdonckt, J., Roy, P.V.: A Toolkit for Peer-to-
Peer Distributed User Interfaces: Concepts, Implementation, and Applications. In:
Proc. EICS. (2009)

3. Ghiani, G., Paternò, F., Santoro, C.: Push and Pull of Web User Interfaces in
Multi-Device Environments. In: Proc. AVI. (2012)

4. Daniel, F., Casati, F., Benatallah, B., Shan, M.: Hosted Universal Composition:
Models, Languages and Infrastructure in mashArt. In: Proc. ER. (2009)

5. Ghiani, G., Paternò, F., Spano, L.D.: Creating Mashups by Direct Manipulation
of Existing Web Applications. In: Proc. IS-EUD. (2011)

6. Husmann, M., Nebeling, M., Norrie, M.C.: MultiMasher: A Visual Tool for Multi-
Device Mashups. In: Proc. ICWE. (2013)

7. Paternò, F., Santoro, C.: A Logical Framework for Multi-Device User Interfaces.
In: Proc. EICS. (2012)

8. Daniel, F., Soi, S., Tranquillini, S., Casati, F., Heng, C., Yan, L.: Distributed
Orchestration of User Interfaces. Inf. Syst (2012) 37(6):539556.

9. Melchior, J., Vanderdonckt, J., Roy, P.: A Model-Based Approach for Distributed
User Interfaces. In: Proc. EICS. (2011)

10. Paternò, F., Santoro, C., Spano, L.D.: Maria: A Universal, Declarative, Multi-
ple Abstraction-Level Language for Service-Oriented Applications in Ubiquitous
Environments. In: TOCHI, 16(4). (2009)

11. Kovachev, D., Renzel, D., Nicolaescu, P., Klamma, R.: DireWolf - Distributing and
Migrating User Interfaces for Widget-Based Web Applications. In: Proc. ICWE.
(2013)

12. Chudnovskyy, O., Fischer, C., Gaedke, M., Pietschmann, S.: Inter-Widget Com-
munication by Demonstration in User Interface Mashups. In: Proc. ICWE. (2013)

13. Maras, J., Stula, M., Carlson, J.: Reusing Web Application User-Interface Controls.
In: Proc. ICWE. (2011)

14. Greenberg, S., Roseman, M.: GroupWeb: A WWW Browser as Real Time Group-
ware. In: Proc. CHI. (1996)

15. Lowet, D., Goergen, D.: Co-browsing Dynamic Web Pages. In: Proc. WWW.
(2009)

16. Nichols, J., Hua, Z., Barton, J.: Highlight: A System for Creating and Deploying
Mobile Web Applications. In: Proc. UIST. (2008)

17. Bila, N., Ronda, T., Mohomed, I., Truong, K.N., de Lara, E.: PageTailor: Reusable
End-User Customization for the Mobile Web. In: Proc. MobiSys. (2007)

18. Nebeling, M., Speicher, M., Norrie, M.C.: CrowdAdapt: Enabling Crowdsourced
Web Page Adaptation for Individual Viewing Conditions and Preferences. In:
Proc. EICS. (2013)

